• Title/Summary/Keyword: High temperature heating

Search Result 1,673, Processing Time 0.027 seconds

Effects of High Temperature and Radiation on the Properties of Thermal, mechanical and Shielding Ability of Neutron Shielding Materials (고온 및 방사선이 중성자 차폐재의 열적, 역학적 및 차폐능 특성에 미치는 영향)

  • Jo, Su-Haeng;Hong, Sun-Seok;Jeong, Myeong-Su;Do, Jae-Beom;Park, Hyeon-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.404-408
    • /
    • 1999
  • Effects of heating time and radiation under high temperature on the properties of thermal, mechanical and shielding ability of modified (KNS-101), hydrogenated bisphenol-A(KNS-201) type epoxy resin and phenol-novolac(KNS-301) type epoxy resin based neutron shielding materials that are used for shipping casks for radioactive material have been investigated. At early stages, the offset temperatures of KNS-101, KNS-201 and KNS-301 increased with the heating time under high temperature, but it was rarely affected by the heating time in the later stages. In addition, the thermal conductivities of KNS-101 and KNS-201 decreased with heating time, but that of KNS-301 increased with the heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials decreased with heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials of KNS-101 and KNS-301 increased with heating time, but those of KNS-201 decreased with heating time. The shielding ability of neutron shielding materials slightly increased with the radiation dose, and shielding abilities of shielding materials of KNS-101 and KNS-201 were affected to a more extent than that of KNS-301 by radiation dose under high temperature.

  • PDF

Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating (고주파 유도가열을 적용한 사출성형품의 웰드라인 개선)

  • Seo, Young-Soo;Son, Dong-Hwi;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF

An Experimental Study on the Compressive Strength of High Strength Concrete Heated High. (고온수열된 고강도콘크리트의 압축강도에 관한 실험적 연구)

  • 강병희;오창희
    • Fire Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 1989
  • The results on high strength concrete by heating high are as follows: 1. High strength concrete appeared an estimated 5.5% higher than ordinary concrete in the central temperature of specimens by heating. 2. High strength concrete is higher than ordinary concrete in the decreased width of the ratio on the residual compressive strength by heating high. According to heating temperature and time, the inferred formula of compressive strength on high strength concrete showed: Fc=-0.53Te -2.4Ti +748.4

  • PDF

Low Temperature Growth of High-Quality Carbon Nanotubes by Local Surface Joule Heating without Heating Damage to Substrate

  • Heo, Sung-Taek;Lee, Dong-Gu
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.230-233
    • /
    • 2009
  • In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around $1200^{\circ}C$ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at $300^{\circ}C$ by applying 125 V for joule heating as same as carbon nanotubes grown at $900^{\circ}C$.

Evaluation of Heating and Cooling Thermal Output Characteristics of Prefabricated Steel Wall Panel System for Radiant Heating and Cooling (강판 마감형 조립식 벽패널 복사냉난방시스템의 냉난방 방열 특성 평가)

  • Lim, Jae-Han;Koo, Bo-Kyoung;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • Recently the radiant panel heating and cooling system has been regarded as an alternative of low temperature heating and high temperature cooling by applying the renewable energy sources to the heating and cooling of buildings. Especially this system can be used as HVAC system alternatives in super high-rise buildings for energy saving and thermal comfort. Also it can be possible to reduce the plenum space because the minimum ventilation air will be supplied into the space. This study focused on the evaluation the basic characteristics of thermal output in prefabricated steel wall panel system for radiant heating and cooling. In order to evaluate the thermal output according to both various supply water temperatures and supply water flow rates, three-dimensional dynamic heat transfer analysis was performed. As results, for the heating mode, thermal output increased by 26% with the supply temperature increasing by $5^{\circ}C$. The surface temperature of panels range within $1{\sim}3^{\circ}C$. For the cooling mode, thermal output decreased by 18.2% with the supply temperature increasing by $2^{\circ}C$. The surface temperature of panels range within $0.5{\sim}1^{\circ}C$ and it was shown the even temperature distribution.

Performance Analysis of Simultaneous Heating & Cooling Water Making System(I)-Simulation (냉.온열 동시 제조시스템의 성능분석(I)-Simulation)

  • Park, Seong-Ryong;Park, Jun-Tack;An, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.266-271
    • /
    • 2001
  • In this study, the performance of the simultaneous heating & cooling water making system using R134a was investigated by simulation. The most important effect upon heating COP was intermediate pressure depending on input water temperature. With the input water temperature of $10^{\circ}C\;and\;20^{\circ}C$, optimum intermediate pressure were 923 and 1040kPa, respectively. At that optimum intermediate pressure, the maximum heating COP of the system operated between $0^{\circ}C$ evaporating temperature and $70^{\circ}C$ condensing temperature were 4.15 and 3.83. With installation of the subcoolers in high or low pressure section, the system COP was increased by reducing the refrigerant mass flow rate. Under the optimum pressure and $10^{\circ}C$ input water temperature, it was found that heating COP was maximized when the low-subcooler and high-subcooler capacity rate were taken by 14% and 13%, respectively.

  • PDF

An Experimental Study on the Mechanical Behavior of High-Strength Concretes Subjected to High Temperature (고온을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Yang, Keun-Hyeok;Hong, Seong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.25-28
    • /
    • 2005
  • The experimental results on the mechanical behavior of high-strength concretes subjected to high temperature were presented. Main variables were heating temperature, heating continuance time, and cooling condition. The compressive strength properties of high strength concrete(HSC) varied differently with temperature than those of normal strength concrete(NSC). HSC had higher rates of strength loss than NSC in the temperature range of between $20^{circ}C$ and $400^{circ}C$. Especially, HSC exploded in $400^{circ}C$ of high temperature.

  • PDF

High-Temperature Oxidation of MoSi2 Heating Elements (이규화몰리브덴 고온발열체의 고온산화거동)

  • Seo, Chang-Yeol;Jang, Dae-Ga;Sim, Geon-Ju;Jo, Deok-Ho;Kim, Won-Baek
    • Korean Journal of Materials Research
    • /
    • v.6 no.1
    • /
    • pp.57-66
    • /
    • 1996
  • MoSi2 heating elements were fabricated by sintering of MoSi2 powders which were synthesized through SHS(Self-propagating high-temperature synthesis). Their high-temperature oxidation behavior in air through SHS(Self-propagating high-temperature synthesis). Their high-temperature oxidation behavior on air at 1000-1600$^{\circ}C$ was investigated through a high-temperature X-ray diffractomer and isothermal heating in a muffle furnace. The thermal expansion of MoSi2 and SiO2 was studied by measuring their lattice parameters on heating. The linear expansion coeffcient of MoSi2 along c-axis was about 1.5 times larger than that along a-axis showing a strong thermal anisotropy. Few $\mu\textrm{m}$-thick Mo5Si3 layer was found beneath SiO2 layer suggesting that The major reaction products would be SiO2 and Mo5Si3. The Si-rich bentonite resulted in the faster growth of MoSi2 grains probably by enhancing the mass transport when they are melted during high-temperature oxidation.

  • PDF

Study on the Heat Generation Characteristics of the Carbon Heating Source with High Temperature (고온 카본발열체의 발열특성에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Shin, J.H.;Jeong, H.M.;Chung, H.S.;Chun, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.106-111
    • /
    • 2001
  • This paper is a study on the heat generation characteristics of the carbon heating source with high temperature. The main variables of this study are the input current and the amount of carbon heating source. As the results of the experiment in the waste rate of carbon heating source. The case of carbon heating source 300g was large than 500g. As the input current and the temperature are increased, the resistance values of carbon heating source were large. The Joule heat was represented the large value as the amount of heating source decrease with the input current. Finally, the heating source was represented the electrical steady state as the input current is increase.

  • PDF

Spalling Properties of Ring-Type Restrained Concrete by Heating Conditions (가열조건에 따른 링형 구속 콘크리트의 폭렬특성)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • In this study, surface spalling and explosive spalling of ring-type ultra-high strength concrete under rapid heating and slow heating were investigated. In rapid heating, the internal temperature difference of the concrete is large, so that continuous surface spalling occurs. However, in slow heating, the difference in the internal temperature of the concrete is small, resulting in explosive spalling at a time. Since the heating condition has a great influence on the internal temperature of the concrete, it is necessary to consider the spalling of the concrete under various heating conditions.

  • PDF