• Title/Summary/Keyword: High temp

Search Result 104, Processing Time 0.022 seconds

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Skin Temperature Responses of Hanbok When It Worn (한복 착용에 따른 피보온의 변화)

  • 송명견;신정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.763-770
    • /
    • 2002
  • The objective of the study was to investigate skin temperature responses of Hanbok when it was worn. Two healthy females(average 21 years, 155cm and 60kg were exposed to a climatic chamber(Room Temp. $21{\pm}1^{\circ}C,\;52{\pm}2%R.H.$, 0.15m/s). During the experiment, rectal temperature, skin temperature of 9 areas, clothing microclimate, subjective sensation were measured. Chima and Jogory to be made of silk nobang(SN) or Ramie were worn for summer. Polyester(P) Chima and Jogori(R) could be wort for spring and autumn. For winter, silk Chima, Jogori(S) and Durumagi(D) were commonly worn. Rectal temperature was high in order of naked(N), R, SN, P, S, D. However Mean skin temperature was reversely high in order of D, S, SN, R, P, naked. In naked, skin temperature was high in order of head, trunk upper extremity and lower extremity. But on wearing of Hanbok, it was the highest at the chest except head regardless of kinds of clothing ensembles. Skin temperature of upper arm was secondly highest on wearing the silk ensemble and the Durumagi ensemble, but skin temperature of buttock was secondly highest on wearing the silk nobang ensemble and the ramie ensemble. Skin temperature on wearing the silk ensemble was generally higher than those on other clothing ensembles. Local and mean skin temperatures on wearing the silk ensemble and the Durumagj ensemble were generally higher than on other clothing ensembles. Heat resistance of the fabric might have affected on the local skin temperature.

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

Effect of Processing Condition of Texturing M/C on the Physical Properties of Textured Polyester Filament (폴리에스테르 필라멘트의 텍스쳐링 공정조건이 사물성에 미치는 영향)

  • 김승진;안병훈;이민수
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.18-23
    • /
    • 1999
  • PET POY(pre-oriented-yam) were treated by false twister to high bulky. False twister have many processing parameters velocity ratio(VR), belt cross angle$(\theta)$, 1st heater temp. and K(twisting tension/untwisting tension). we analyzed the effect of properties of textured polyester yam on processing condition. Initial modulus, thermal stress, No. of snarl is decreased by 1st heater. In VR=1.97, Dry and wet shrinkage is increased but is decreased by 1st heater in VR=1.564. K/S and cristallinity tend to increase by decreasing VR.

  • PDF

A Study of NOx Removal in Flue Gas by Selective Catalytic Reduction (선택적 촉매환원법에 의한 배기가스중 NOx 저감에 관한 연구)

  • 박해경;김경림;최병선;이인철;최익수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.38-46
    • /
    • 1988
  • NOx is an important air pollution material which is generated when fossil fuels are burning, NOx removal in flue gas by selective catalytic reduction was studied over various catalysts in a fixed bed continuous flow reactor. The ranges of experimental conditions were at the temperatures between $200^\circ$C and $350^\circ$C, the $NH_3/NOx$ mole ratios between 0.8 and 1.4, oxygen concentrations between 1.5% and 3% and the space velocities between 5, 000 $hr^-1$ and 12, 500 $hr^-1$. The efficiency of NOx removal in the ranges of experimental conditions was highest at the temp. of 300$^\circ$C, oxygen concentration of 2.5-2.6% and $NH_3/NOx$ mole ratios of 1.0-1.2. The catalyst with high activity for NOx removal in flue gas was found to be $MoO_3-V_2O_5/TiO_2$.

  • PDF

A Study on Characteristics of dot-ring type Filter of PMS-PZT (PMS-PZT계의 3단자형 필터 특성에 관한 연구)

  • Park, G.Y.;Song, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.753-756
    • /
    • 1992
  • The piezoelectric ceramics of PMS-PZT was made in the radial mode disk. As the results, in the application of filter required conditions: that is, higher-values for piezoelectric properties($K_p$, $Q_m$) and lower-values for stabilities of $F_{\tau}$(temp. coefficient, aging rate), 5PMS-51PT-44PZ composition statified well. This composition was made in the dot-ring type. Asthe results, with increasing $n^2$ both $Q_m$ and S had high values, decreasing $n^2$ both $K_p$ and BW had low values when the diameter of sintered bodies were constant. Therefore, curve of filter characteristic have sharped with increasing $n^2$ and BW broadened with decreasing $n^2$.

  • PDF

Steam Reforming of Methane in a Solar Concentrated Receiver Reactor (집광된 태양열을 반응기에서의 메탄 수증기개질 연구)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.172-175
    • /
    • 2006
  • Steam reforming of methane using Xe-arc solar simulator was studied for converting solar radiation into energy foam that one can readily utilize. The Xe-arc lamp produce a spectrum similar to that of the sun. SiC ceramic foam, resist high temp.$(>900^{\circ}C)$, is used to catalytically active foam absorber, and to support of reforming catalyst. The catalyst on the surface of foam were directly irradiated with solar simulated xe-light in order to carry out the steam reforming of methane. The reactor was made of stainless steel and quartz window was located on a place of the xe-light irradiation and temperature was controlled using K-type thermocouple in contact with catalyst located inside the reactor. The result show that a possibility of solar reforming using catalytically active foam absorber is exist.

  • PDF

Development trend of material and manufacturing process for fossil power generation (화력발전 소재 및 제조기술 개발)

  • Lee, Kyongwoon;Kong, Byeongook;Kim, Minsoo;Kang, Chung Yun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.141-148
    • /
    • 2016
  • This paper presents an overview of worldwide electric power development and National $700^{\circ}C$ Hyper Supercritical coal-fired power generation(HSC) focus on materials and manufacturing process. To Increase the efficiency of electric power generation, It is necessary to increase steam temperature and pressure. In that case, New material and manufacturing process shall be developed for boiler and turbine component in high temperature and pressure operating condition. Therefore, Much Efforts in worldwide are progressing to develop materials and manufacturing technology and to build and operate an HSC.