• Title/Summary/Keyword: High speed shear

Search Result 299, Processing Time 0.028 seconds

Optimum Structural Design of Sandwich Plates Considering the Shear Buckling (전단 좌굴을 고려한 샌드위치 평판의 최적 구조 설계에 관한 연구)

  • C.D. Jang;M.S. Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.56-65
    • /
    • 1996
  • Recently, with development of mechanics of materials, as pursuing the high speed of the ships, there has been an increasing demand on the composite construction which satisfies high strength and low weight at the same time. A sandwich element is a type of composite construction, which is composed of thin, strong, stiff and relatively high density faces and a thick, light, and weaker core material. As the second moment is increased by faces separated from the neutral axis farther, a sandwich element is most effective light structural form. In this study, Rayleigh-Ritz Energy Method is adopted, which can analyze sandwich plate relatively simply and exactly. Stresses and buckling loads are analyzed exactly, when uniform lateral pressure load, inplane compression and inplane shear are acting at the sandwich plate. Including a wrinkling stress, this study can be applied to the initial design and minimum weight design of sandwich plates.

  • PDF

DESIGN OF A SINGLE MODE VARIABLE BRIDGE TYPE SPLIT-POWERED CVT WITH AN INNER-SPHERICAL CONTINUOUSLY VARIABLE UNIT

  • Seong, S.H.;Lee, H.W.;Choi, J.H.;Park, N.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.799-806
    • /
    • 2007
  • One method for improving the torque capacity of the CVT is to use a split-powered CVT(SPCVT) to reduce the power transmitted into a continuously variable unit(CVU). A variable bridge SPCVT with two planetary gear units(PGUs), which are composed of a sun gear, a ring gear, and carrier and planetary gears, can minimize the power to the CVU. However, a SPCVT with a conventional CVT should possess a dual mode, which would allow the conventional CVT to be used at high speeds and an additional gear train to be used at low speeds. The inner-spherical CVU(ISCVU) with an inner and outer spherical contact mechanism developed in this study can cover the range from low to high speeds. The rated power and the overall speed ratios were 100 kW and $0.09{\sim}0.36$, respectively. Power efficiency was numerically calculated to be over 90% over the speed ratio range of $0.1{\sim}0.29$. The maximum shear stress at the two contact areas of the rotor pairs, the minimum life and the overall size were estimated to be 700 MPa, 276 kh and $350{\times}350{\times}400mm^3$, respectively. This study shows that an ISCVU and a variable bridge type PGU can realize the SPCVT with a single mode for a vehicle.

Variations of the Summertime Tropical Cyclone Intensity near 30°N in East Asia (동아시아의 30°N부근에서 여름철 태풍 강도변화)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung;Lee, Ji-Sun
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1089-1101
    • /
    • 2009
  • In this paper, changes in the intensity (e.g., central pressure and maximum sustained wind speed) of Tropical Cyclone (TC) in summer in the regions located at $30^{\circ}N$ in East Asia from 1988 to 1991 were found. The intensity of TC from 1991 to 2007 was much higher than that of TC from 1965 to 1988. The reason for this was that the frequency of TCs passing China from 1991 to 2007 was much lower than that of TCs from 1965-1988 because a northeasterly wind caused by high-pressure circulation in East Asia got severer along the East Asian coast. Instead, TCs moved from the eastern region of the Tropical West Pacific to Korea and Japan mainly after passing the East China Sea due to the low-pressure circulation strengthened in the subtropical waters of East Asia. In addition, low Vertical Wind Shear (VWS) was created along the mid-latitude regions of East Asia and the main path of TCs from 1991 to 2007. Most of the regions in the Northwestern Pacific showed higher Sea Surface Temperature (SST) from 1991 to 2007, and had a good environment where TCs were able to maintain a higher intensity on the mid-latitude. In particular, a low sensible heat flux occurred due to high snow depth in East Asia in the spring of 1991 to 2007. Accordingly, the lower layer of East Asia showed high-pressure circulation, and the sea surrounding East Asia showed low-pressure circulation. Thus, the typical west-high, east-low pattern of winter atmospheric pressure was shown. The possibility of snowfall in East Asia in spring to be used as a factor for predicting the summer intensity of TC in the mid-latitude regions of East Asia was insinuated. The characteristics of TC in a low-latitude region were the same in Korea. The latest intensity of TCs got higher, and the landing location of TCs gradually changed from the west coast to the south coast.

Material Characterization of MR Fluids at High Frequencies (고주파 영역에서의 MR 유체 특성연구)

  • Park, Kyoung-Mi;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

Prediction of Hemolysis in Intra-Cardiac Axial Flow Blood Pumps for Optimization of the Impellers (심장 내 이식형 축류 혈액펌프의 임펠러 최적화를 위한 용혈량 예측)

  • Kim, Dong-Uk;Mitamura, Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.431-437
    • /
    • 2002
  • Low hemolysis is one of the key factors in the production of successful rotary blood pumps. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer Fluid dynamics in five different axial flow pumps was analyzed 3-dimensionally using CFD software. The impeller was rotated at a speed which supplied a flow of 5L/min at a pressure difference of 100mmHg. Changes in the turbulent kinetic energy along streamlines through the pumps were computed. Reynolds' shear stress( (equation omitted) ) was calculated using the turbulent kinetic energy. Hemolysis was evaluated based on Reynolds'shear stress and its exposure time(t) : dHb/Hb=3.62$\times$10$^{-5}$ $t^{0.785}$$\tau$$^{2.416}$ . Hemolysis of the pumps was measured in vitro using fresh bovine blood to which citrate phosphate dextrose was added to prevent clotting. A pump flow of 5L/min was maintained at a pressure difference of 100mmHg for 3h. The normalized index of hemolysis(NIH) as measured. Reynolds' shear stress was high behind the impellers. The measured NIH and the calculated hemolysis(dHb/Hb) shoed a good correlation; NIH=0.0003(dHb/Hb) (r=0.90, n=6) in the range of NIH between 0.003 and 1.1. CFD analysis can predict the in vitro results of hemolysis as well as the areas where hemolysis occurs.ysis occurs.

A Study on Tensile Shear Characteristics of Dissimilar Joining Between Pre-coated Automotive Metal Sheets and Galvanized Steels with the Self-Piercing Rivet and Hybrid Joining (Self-Piercing Rivet과 Hybrid Joining을 이용한 자동차용 선도장 칼라강판과 용융아연도금강판의 접합부 기계적 성질 평가)

  • Bae, Jin-Hee;Kim, Jae-Won;Choi, Ildong;Nam, Dae-Geun;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • The automotive manufactures increase their use of lightweight materials to improve fuel economy and energy usage has a significant influence on the choice of developing materials. To meet this requirements manufacturers are replacing individual body parts with lightweight metals, for these the process treating and painting surfaces is changing. The pre-coated steels are newly developed to avoid the conventional complex and non-environmental painting process in the body-in-white car manufacturing. The development of new joining techniques is critically needed for pre-coated steel sheets, which are electrically non-conductive materials. In the present study, dissimilar combination of pre-coated steel and galvanized steel sheets were joined by the self-piercing rivet, adhesive bonding and hybrid joining techniques. The tensile shear test and free falling high speed crash test were conducted to evaluate the mechanical properties of the joints. The highest tensile peak load with large deformation was observed for the hybrid joining process which has attained 48% higher than the self-piercing rivet. Moreover, the hybrid and adhesive joints were observed better strain energy compared to self-piercing rivet. The fractography analyses were revealed that the mixed mode of cohesive and interfacial fracture for both the hybrid and adhesive bonding joints.

Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures

  • Hong, Won-Taek;Byun, Yong-Hoon;Kim, Sang Yeob;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.197-216
    • /
    • 2016
  • The increased speed of a train causes increased loads that act on the track substructures. To ensure the safety of the track substructures, proper maintenance and repair are necessary based on an accurate characterization of strength and stiffness. The objective of this study is to develop and apply a cone penetrometer incorporated with the dynamic cone penetration method (CPD) for investigating track substructures. The CPD consists of an outer rod for dynamic penetration in the ballast layer and an inner rod with load cells for static penetration in the subgrade. Additionally, an energy-monitoring module composed of strain gauges and an accelerometer is connected to the head of the outer rod to measure the dynamic responses during the dynamic penetration. Moreover, eight strain gauges are installed in the load cells for static penetration to measure the cone tip resistance and the friction resistance during static penetration. To investigate the applicability of the developed CPD, laboratory and field tests are performed. The results of the CPD tests, i.e., profiles of the corrected dynamic cone penetration index (CDI), profiles of the cone tip and friction resistances, and the friction ratio are obtained at high resolution. Moreover, the maximum shear modulus of the subgrade is estimated using the relationships between the static penetration resistances and the maximum shear modulus obtained from the laboratory tests. This study suggests that the CPD test may be a useful method for the characterization of track substructures.

Laminar Flow past a Sphere Rotating in the Transverse Direction (횡 방향으로 회전하는 구 주위의 유동특성)

  • Kim Dongjoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.83-86
    • /
    • 2002
  • Numerical simulations are conducted for laminar flow past a sphere rotating In the transverse direction, in order to investigate the effect of the rotation on the characteristics of flow over a sphere. The Reynolds numbers considered are Re=100, 250 and 300 based on the free-stream velocity and the sphere diameter, and the rotational speeds are in the range of $0{\leq}{\omega}{\leq}1$, where ${\omega}^{\ast}$ is the maximum velocity on the sphere surface normalized by the free-stream velocity. At ${\omega}^{\ast}=0$ (without rotation), the flow past the sphere experiences steady axisymmeoy, steady planar-symmetry and unsteady planar-symmetry, respectively, at Re=100, 250 and 300. However, with rotation, the flow becomes planar-symmetric for all the cases investigated and the symmetry plane is orthogonal to the axis of the rotation. The flow is also steady or unsteady depending on both the Reynolds number and the rotational speed, and the vortical structures behind the sphere are significantly modified by the rotation. For example, at Re=300, hairpin vortices completely disappear in the wake at ${\omega}^{\ast}=0.4\;and\;0.6$, and at ${\omega}^{\ast}=1$ vortical structures of a high frequency are newly generated due to the shear layer instability. It is also shown that with increasing rotational speed, the time-averaged drag and lift coefficients increase monotonically.

  • PDF

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.