• Title/Summary/Keyword: High reliability network

Search Result 491, Processing Time 0.029 seconds

Web Server Implementation via OpenWRT-based Wired/Wireless Router (OpenWRT 기반 유무선 공유기를 통한 웹 서버 구축)

  • Ha, Seung-Eup;Min, Jun-Ki;Ban, Tae-Hak;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1055-1057
    • /
    • 2013
  • Routers currently used in homes and institutions have a function of multiple computers to connect to the Internet with a single IP address. It is possible only through setting or establishing a separate operation in a used PC or server to function as a web/printer server, web hard, and P2P. In this paper, by utilizing the OpenWRT Linux-based through the construction of the Web server through a router OpenWRT of (Open Wireless Router) base, to build a server simple compact, low power consumption, low cost, to operate by reliability to provide Internet telephony and multimedia services high securely over the server security, which is based on the setting of policy and various firewall at the same time the configuration of the network utilizing OpenWRT router that can be enhanced, to construct a Web server through a router multi functional can receive the provision of services using the program PC and mobile APP.

  • PDF

Failure Analysis to Derive the Causes of Abnormal Condition of Electric Locomotive Subsystem (센서 데이터를 이용한 전기 기관차의 이상 상태 요인분석)

  • So, Min-Seop;Jun, Hong-Bae;Shin, Jong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies' attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.

A Development of Sensor Monitoring System for Offshore Plant Cargo Lift (해양플랜트용 Cargo Lift 센서 모니터링 시스템에 관한 연구)

  • Kim, Bae-sung;Hwang, Hun-gyu;Shin, Il-sik;Choi, Jung-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.364-366
    • /
    • 2017
  • Unlike general ships, offshore plants require high reliability due to their long operating time at fixed positions when they are operated. Sensor-based status information is required for user and maintenance worker to ensure safety. In this paper, we propose a monitoring system for safety diagnosis and inspection of cargo lift for offshore plant. It consists of a sensor unit mounted on the cargo Lift, an embedded system measurement unit, and a monitoring unit for real-time data verification. It is based on the ship standard network IEC 61162-450 for the exchange of operating information and sensor measurement information in accordance with the upgrading and integration of equipment in maritime.

  • PDF

Efficient Load Balancing Scheme using Resource Information in Web Server System (웹 서버 시스템에서의 자원 정보를 이용한 효율적인 부하분산 기법)

  • Chang Tae-Mu;Myung Won-Shig;Han Jun-Tak
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.151-160
    • /
    • 2005
  • The exponential growth of Web users requires the web serves with high expandability and reliability. It leads to the excessive transmission traffic and system overload problems. To solve these problems, cluster systems are widely studied. In conventional cluster systems, when the request size is large owing to such types as multimedia and CGI, the particular server load and response time tend to increase even if the overall loads are distributed evenly. In this paper, a cluster system is proposed where each Web server in the system has different contents and loads are distributed efficiently using the Web server resource information such as CPU, memory and disk utilization. Web servers having different contents are mutually connected and managed with a network file system to maintain information consistency required to support resource information updates, deletions, and additions. Load unbalance among contents group owing to distribution of contents can be alleviated by reassignment of Web servers. Using a simulation method, we showed that our method shows up to $50\%$ about average throughput and processing time improvement comparing to systems using each LC method and RR method.

Fault-Tolerant Event Detection in Wireless Sensor Networks using Evidence Theory

  • Liu, Kezhong;Yang, Tian;Ma, Jie;Cheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3965-3982
    • /
    • 2015
  • Event detection is one of the key issues in many wireless sensor network (WSN) applications. The uncertainties that are derived from the instability of sensor node, measurement noise and incomplete sampling would influence the performance of event detection to a large degree. Many of the present researches described the sensor readings with crisp values, which cannot adequately handle the uncertainties inhered in the imprecise sensor readings. In this paper, a fault-tolerant event detection algorithm is proposed based on Dempster-Shafer (D-S) theory (also called evidence theory). Instead of crisp values, all possible states of the event are represented by the Basic Probability Assignment (BPA) functions, with which the output of each sensor node are characterized as weighted evidences. The combination rule was subsequently applied on each sensor node to fuse the evidences gathered from the neighboring nodes to make the final decision on whether the event occurs. Simulation results show that even 20% nodes are faulty, the accuracy of the proposed algorithm is around 80% for event region detection. Moreover, 97% of the error readings have been corrected, and an improved detection capability at the boundary of the event region is gained by 75%. The proposed algorithm can enhance the detection accuracy of the event region even in high error-rate environment, which reflects good reliability and robustness. The proposed algorithm is also applicable to boundary detection as it performs well at the boundary of the event.

Parallelization of Genome Sequence Data Pre-Processing on Big Data and HPC Framework (빅데이터 및 고성능컴퓨팅 프레임워크를 활용한 유전체 데이터 전처리 과정의 병렬화)

  • Byun, Eun-Kyu;Kwak, Jae-Hyuck;Mun, Jihyeob
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.10
    • /
    • pp.231-238
    • /
    • 2019
  • Analyzing next-generation genome sequencing data in a conventional way using single server may take several tens of hours depending on the data size. However, in order to cope with emergency situations where the results need to be known within a few hours, it is required to improve the performance of a single genome analysis. In this paper, we propose a parallelized method for pre-processing genome sequence data which can reduce the analysis time by utilizing the big data technology and the highperformance computing cluster which is connected to the high-speed network and shares the parallel file system. For the reliability of analytical data, we have chosen a strategy to parallelize the existing analytical tools and algorithms to the new environment. Parallelized processing, data distribution, and parallel merging techniques have been developed and performance improvements have been confirmed through experiments.

A Study on Application of Autonomous Traffic Information Based on Artificial Intelligence (인공지능 기반의 자율형 교통정보 응용에 대한 연구)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.827-833
    • /
    • 2022
  • This study aims to prevent secondary traffic accidents with high severity by overcoming the limitations of existing traffic information collection systems through analysis of traffic information collection detectors and various algorithms used to detect unexpected situations. In other words, this study is meaningful present that analyzing the 'unexpected situation that causes secondary traffic accidents' and 'Existing traffic information collection system' accordingly presenting a solution that can preemptively prevent secondary traffic accidents, intelligent traffic information collection system that enables accurate information collection on all sections of the road. As a result of the experiment, the reliability of data transmission reached 97% based on 95%, the data transmission speed averaged 209ms based on 1000ms, and the network failover time achieved targets of 50sec based on 120sec.

Development of Flood Runoff Forecasting System by using Artificial Neural Networks - Development & Application of GUI_FFS - (인공신경망 이론을 이용한 홍수유출 예측 시스템 개발 - GUI_FFS 개발 및 적용 -)

  • Park, Sung-Chun;Oh, Chang-Ryol;Kim, Dong-Ryeol;Jin, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.145-152
    • /
    • 2006
  • In the present study, a nonlinear model of rainfall-runoff process using Artficial Neural networks(ANNs) which have no consideration on the physical parameter for the basin was developed at Naju station which is the main stream of Yeongsan-river, and Sunam station which is the main stream of Hwangryong-river. The result from the model of ANN_NJ_9 at the Naju station revealed the best result of the rainfall-runoff process, while the model of ANN_SA_9 for the Sunam station. Also, GUI_FFS developed in the research showed the $R^2$ of more than 0.98 between the observed and predicted values using the rainfall and runoff in the respective stations. Therefore, the GUI_FFS might be expected that it can play a role for the high reliability to operate and manage the water resources and the design of river plan more efficiently in the future.

A method of assisting small intestine capsule endoscopic lesion examination using artificial neural network (인공신경망을 이용한 소장 캡슐 내시경 병변 검사 보조 방법)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.2-5
    • /
    • 2022
  • Human organs in the body have a complex structure, and in particular, the small intestine is about 7m long, so endoscopy is not easy and the risk of endoscopy is high. Currently, the test is performed with a capsule endoscope, and the test time is very long. The doctor connects the removed storage device to the computer to store the patient's capsule endoscope image and reads it using a program, but the capsule endoscope test results in a long image length, which takes a lot of time to read. In addition, in the case of the small intestine, there are many curves due to villi, so the occlusion area or light and shade of the image are clearly visible during the examination, and there may be cases where lesions and abnormal signs are missed during the examination. In this paper, we provide a method of assisting small intestine capsule endoscopic lesion examination using artificial neural networks to shorten the doctor's image reading time and improve diagnostic reliability.

  • PDF

Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model (인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘)

  • Gun-Ha Park;Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.383-388
    • /
    • 2024
  • This paper is a study to derive the predicted value of power generation based on the photovoltaic power generation data measured in Jeollanam-do, South Korea. Multivariate variables such as direct current, alternating current, and environmental data were measured in the inverter to measure the amount of power generation, and pre-processing was performed to ensure the stability and reliability of the measured values. Correlation analysis used only data with high correlation with power generation in time series data for prediction using partial autocorrelation function (PACF). Deep learning models were used to measure the amount of power generation to predict the amount of photovoltaic power generation, and the results of correlation analysis of each multivariate variable were used to increase the prediction accuracy. Learning using refined data was more stable than when existing data were used as it was, and the solar power generation prediction algorithm was improved by using only highly correlated variables among multivariate variables by reflecting the correlation analysis results.