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Abstract 
 

Event detection is one of the key issues in many wireless sensor network (WSN) applications. 
The uncertainties that are derived from the instability of sensor node, measurement noise and 
incomplete sampling would influence the performance of event detection to a large degree. 
Many of the present researches described the sensor readings with crisp values, which cannot 
adequately handle the uncertainties inhered in the imprecise sensor readings. In this paper, a 
fault-tolerant event detection algorithm is proposed based on Dempster-Shafer (D-S) theory 
(also called evidence theory). Instead of crisp values, all possible states of the event are 
represented by the Basic Probability Assignment (BPA) functions, with which the output of 
each sensor node are characterized as weighted evidences. The combination rule was 
subsequently applied on each sensor node to fuse the evidences gathered from the neighboring 
nodes to make the final decision on whether the event occurs. Simulation results show that 
even 20% nodes are faulty, the accuracy of the proposed algorithm is around 80% for event 
region detection. Moreover, 97% of the error readings have been corrected, and an improved 
detection capability at the boundary of the event region is gained by 75%. The proposed 
algorithm can enhance the detection accuracy of the event region even in high error-rate 
environment, which reflects good reliability and robustness. The proposed algorithm is also 
applicable to boundary detection as it performs well at the boundary of the event. 
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1. Introduction 

In recent years, wireless sensor networks (WSNs) have been utilized in a wide range of 
applications, including military, industrial, agricultural, and environmental sensing uses [1-4]. 
In almost all of such applications, event detection is a key issue that masses of sensor nodes are 
distributed in a geographical region to make firm and accurate decisions about the presence or 
absence of specific events, such as the presence of toxic chemical in water and air [5], fire 
detection [6], or abnormal target search [7]. Because sensor nodes are typically directly 
exposed to the environment, they are highly vulnerable to damages caused by external 
physical and chemical forces. Instability and noise interference also exist within the wireless 
communication links between nodes, causing sensor network nodes to operate inconsistently, 
and thus be prone to failure. Therefore, the use of an event detection algorithm with 
fault-tolerant mechanisms is extremely essential. Fault tolerance is a mechanism that allows 
networks to determine whether an event has been detected, and identifies failed nodes when a 
fault occurs within some of the nodes in the network. A possible solution is to provide 
redundant information contained within the sensory data from neighboring nodes to 
compensate for untrusted sensor readings.  

Such redundant information among nodes has been used for fault-tolerant processing of 
event detection due to the spatial correlation between adjacent nodes, as mentioned in 
references [8-12]. Krishnamachari et al. [8], who early studied the fault tolerance problem 
associated with event detection in the field of sensor network, proposed a type of Bayesian 
method (BFTA) based on spatial correlation. The BFTA algorithm assumes that events are 
spatially correlated and errors are spatially uncorrelated, and that each sensor has the same 
probability of error occurrence. A sensor node first obtains data from all the neighboring nodes 
which hold the same judgement as its own, and then uses the Bayesian conditional probability 
to calculate the estimated acceptance value to determine whether an error or an event has 
occurred. Chen et al. [9] made up for the errors in the work [8] and a optimized threshold 
calculation approach was presneted. Luo et al. [10] made improvements to the fault-tolerant 
event region model by dividing errors into two types, and thereby theoretically proved that, in 
the case of a given error rate with upper boundary, an optimal number of neighborhood nodes 
could be found so that the amount of power spent by the entire network to run the algorithm is 
maintained at a minimum. References [11-12] incorporated the mechanism of neighboring 
node collaboration to performe fault tolerance event detection based on the joint 
decision-making . These methods show that in distributed sensor networks, event nodes are 
spatially correlated such that it is possible to performe event detection and failed nodes 
identification in virture of data redundancy within nearby nodes. However, the algorithms do 
not take full advantage of data self-correlations of the node itself. It only uses the sensor 
network spatial correlation characteristics to achieve fault detection, which increases the 
complexity of the algorithm while failing to address detection at the boundary. 

In fact, because the environmental noise or hardware failures often make the sampling data 
collected at nodes uncertain, the spatio-temporal correlation characteristics between nodes can 
be used to achieve fault-tolerant event detection at the node. Such use of spatial-temporal 
correlation between nodes to achieve event detection is also mentioned in references [13-16]. 
Cao et al. [13] proposed a spatial-temporal correlation-based event region detection algorithm 
that uses spatial-temporal correlation between nodes to improve the accuracy of event 
detection, which attempts to achieve event detection under unbiased conditions. 
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The aforementioned algorithm shows that temporal or spatial correlation does exist 
between event nodes, and the use of these features can help obtain a higher rate of event 
detection. However, the disadvantage is that each node is simply given the same weight, 
without considering the impact of neighboring nodes at varying distances on event 
decision-making. Furthermore, when a particular sensor node has been misjudged, it is 
absolutely considered a faulty node, and it becomes extremely difficult to re-determine and 
correct such a node. 

Many other scholars have also studied the problem of different sensor nodes in the 
neighboring region affecting event decision-making, as mentioned in references [17-20]. Li et 
al. [17] established a distance -weighted model (DFWD) that analyzed the impact of network 
hierarchy on the central node using the Bays conditional probability model to detect 
fault-tolerant events. Their paper provided different weights to different nodes in order to 
improve event detection accuracy. Ould et al. [18] proposed the use of a maximum a posteriori 
probability criterion-based event detection integrated method that considered the detection 
results from surrounding neighboring nodes. Such an integrated decision method was 
designed to consider, to some extent, the effect of sensing error rate and the distance of 
different nodes on the detection results, although the computational complexity was large. Li 
et al [19] proposed a type of weight distributed fault-tolerant algorithm that used the 
neighboring region of a node and the information obtained from that region for event detection. 
Each node in the neighborhood was assigned a different weight, which was used to determine 
whether the occurrence of a detected event was properly ascertained, and the test result was 
corrected. The algorithm performs extremely well and shows that the introduction of 
node-weight can improve event detection probability. However, the external environment or 
hardware limitations can cause the sensor to detect abnormal data, which can lead to node 
faults be determined mistakenly. In addition, other existing event detection algorithms 
generally do not have good event detection at node boundaries, or simply completely ignore 
event detection at the node boundary. 

To summarize, the current event detection problems that exist within WSNs from the 
perspective of spatial and temporal correlations, or simply from the spatial correlation of 
various different nodes, has led to research on reducing the impact of node sensing data 
uncertainty on false alarm and missing alarm rates; such research is currently extremely 
popular. However, the environmental models of uncertainties are difficult to describe 
accurately, and there are limited studies on event region and boundary detection. This paper 
applies characteristic analysis on the network stuctures and node state distributions to propose 
a D-S evidence theory-based fault-tolerant event detection algorithm (DSFTED). The method 
analyzes the impact of the spatial correlation between nodes at different distances and the node 
states on event detection performance. The output of each sensor node are characterized as 
weighted evidences instead of crisp values, where neighboring nodes status values are 
reasonably fused according to their individual contribution for the detection. The method is 
capable of effectively correcting nodes misjudged as failed nodes. Using D-S evidence theory, 
which possesses the characteristics of analyzing fuzzy situations, this method is applicable not 
only in event region detection, but also in event boundary detection. 

2. Overview of D-S Theory 
D-S evidence theory can be viewed as a general extension of the traditional classical 
probabilistic inference theory in the finite domain, whose main feature is to support the 
description of different levels of accuracy by introducing directly the uncertainty of the 
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unknown into the description.. This theory allows inferring from inprecise and imcomplete 
contexts, and has been applied in various domains such as object recognition, diagnosis, and 
particularly in multi-sensor based applications. The following is a brief introduction to D-S 
evidence theory [21]. 

The basic concept in D-S evidence theory is a probability function that must first be 
defined for evidence that supports a system hypothesis called a Basic Probability Assignment 
(BPA) 

Definition 1. The frame of discernment Ω is a finite hypothesis space that consists of 
mutually exclusive propositions. A Basic Probability Assignment (BPA) or mass function m is 
defined as a mapping of the set 2Ω to [0,1] satisfying m(∅)=0 and ∑ A⊆Ωm(A)=1, where the 
subset A of  Ω, representing any hypothesis, is called the focal set elements if m(A)>0. In the 
case of event detection, m(A) provides a basic belief for event A, which corresponds to the trust 
level to proposition A.  

Dempster's combination rules make it possible that multiple evidences can be fused to get a 
joint support contribution and at the same time reduce uncertainties. The rule is defined as 
follows: 

Definition 2.  Let m1 and m2 be mass functions for two pieces of evidence, the fusing result 
of these two evidences is a new mass function, wihch incorporates the joint information 
provided by the sources as formula (1) below:  
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The generalized rule for combining n number of evidences is presented as formula (2): 
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3. Event Detection using Fusion of Multi Node Evidences 

3.1. Local Detection 

The consecutive sensor  readings of a particular sensor usually depict a smooth variation over 
time, which can be generally accepted as the property of temporal correlation. It means that a 
sensor's own reproted readings would be similar to the readings it reported in the preceding 
instants. Consequently, identification of sudden, abnormal readings deviating notablely from 
its common readings beyond a prespecified threshold helps the node to make its local 
decisions. 

    Assume n number of sensor nodes are uniformly distributed across a region of interest in 
order to detect a specific event. Whenever the sampling value of one node exceeds a threshold 
Sth, the event detection procedure is activated at the node. To confirm if an event does occur or 
not, the node can rely on the sampled data on which a number counting procedure is performed 
within a time window T that is called as  detection window. The counting results are denoted 
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as two variables l and q, where l and q are increased by one repectively on each catching of an 
abnormal data and each occuring of an normal data that belows the threshold Sth. If the amount 
of the abnormal data l exceeds Cth, the node is considered as a detected event, otherwise, it is 
considered as a potential node error, namely 
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The node local-detection algorithm is described in Table 1. 
 

Table 1. Local-detection algorithm 

 

3.2. Event Decision 
The main advantage of local detection algorithm illustrated before is that each sensor node 
makes the best of local observations of the covered area and the temporal correlation inhered 
in the node. However, the local detection cannot eliminate faulty sensor readings caused by 
noise-related failures, biased measurement, node-linking failures and environmental failures. 
The uncertainties contained within the local decisions have not yet to be effectively addressed. 
In this case, a collaborative scheme could be used to promote the reliability of the event 
detection decisions. Due to the property of spatial correlation, at a particular instant, a sensor's 
sampled data value is similar to the ones sensed by its one-hop neighbors. Therefore, the local 
detection decisions of each node regarded as evidences can be fused together using D-S 
combination rules to improve the accuracy of event detection. 

Input: threshold Sth,Cth, time window T 
Out: local-decision ui, the counting number l and q 

(1) //For each node i 
(2) if Sampling value of the node exceeds Sth then 
(3) Trigger an event detection procedure 
(4) Initiate the number l=0 
(5) Initiate the number q=0 
(6) end if 
(7) //Start event detection procedure 
(8) if   The node i detection procedure is active then 
(9)   while( T not end) 
(10)        if   abnormal data then 
(11)             the number l is increased by one 
(12)                if  l ≥  Cth then break  
(13)                end if 
(14)          else if  normal data  
(15)          the number q is increased by one 
(16)        end if 
(17)   end while 
(18) end if 
(19) // Local-decision 
(20) if l ≥  Cth then ui=1 event detected  
(21)   else  ui=0 no event 
(22) end if 
(23) Back to step (2) for next iteration 
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Consider a sensor network composed of massive nodes distributed over a detection filed. 
Each node allocated wih a sensor and is targeted to detect the presence of a specific event. In 
order to realize the evidence fusing based event detection process, the frame of discernment is 
firstly defined as Θ∈(E,NE), where E indicates the occurring of an event, and NE indicates 
none-event with E∩NE=∅. Then, the defined BPA mass function m : p{E,NE}→[0,1] 
satisfies: 
 
                                                                       ( ) 0m ∅ =                                                                         (4) 

                                                  ( ) ( ) { }, 1m E m NE m E NE+ + =                                                      (5) 
 

Where m(E) represents the probability of an event being detected at the node, m(NE) 
represents the probability of normal detection at the node, and m{E,NE} represents the 
probability that the presence of an event at the node cannot be fully confirmed, which discloses 
the uncertainties as discussed before. For each node, three Basic Probability Assignment 
functions are defined to support the hypotheses correspondingly as follows: 
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On the basis of the local detection procedure at each node, these Basic Probability 

Assignment functions can be easily achieved accordingly. The output of BPA functions with 
regarding to a particular event may hold different values because of the diverse beliefs made 
by local decisions of each node on the event. Then, the evidence fusing preocess of a node is 
realized by combining the BPA functions provided by its neighboring nodes. According to the  
combination rule represented in formula (2), a new BPA function as the fusing result can be 
obtained as: 
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. Different source evidences maintain different 

beliefs on the same event. The closer the data source to the event central, the greater is the 
belief level, with normal nodes having higher belief than failed nodes. In order to further 
improve the detection performance, it is necessary to assign a weight to the node BPA function, 
that is to assign each node a different weight Ci, which will be detailed in the following section. 
Then, a node-weighing evidence combination rule is proposed in formula (10) by rewriting 
formula (9). The output denoted as m1,2,⋯,N(E)   represents the node's final event decision using 
fusion of its N neighboring nodes generated evidences.     

                                          
( )1,2,..., 1 1 2 2( ) ( ) ( ) ... ( )N N N im E m E m E m E C= ⊕ ⊕ ⊕                          
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The above proposed fusing process will be implemented at each node that a comprehensive 

knowledge about the current event status can be achieved. Each sensor node covering the area 
of interest, along with its N neighboring nodes, may issue three claims m1,2,⋯,N(E), m1,2,⋯,N(NE) 
and m1,2,⋯,N{E,NE}, which represent the node beliefs on abnormal event, normal status, and 
unknowns respectively. As a result, a more reliable and improved statement about the status of 
the node i is defined as follows: 
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                                                               (11)  
Using equation (11), an neighboring-evidence based event decision can be gained by each 
node. Then, if one node's local-detection status is ui=1 and m1,2,⋯,N(E)≥θ, the node believes it 
has correctly detected an event, in which case its status is changed to Event; or if the node 
status satisfies ui=0 and m1,2,⋯,N(E)≤θ, it believes that no event occurred. Otherwise, if ui=1 and 
m1,2,⋯,N(E)≤θ, as well as if ui=0 and m1,2,⋯,N(E) ≥θ, which mean there occurs a collison between 
the node local-decision and the neighboring fusion decision, the node can be regarded as faulty 
node that may cause false or missing reports. The event decision algorithm is listed in Table 2. 
 

Table 2.  Event decision algorithm  

 

3.3. Weight Setting 
Taking advantage of the property of spatial correlation,  collaborative event detection has 

Input: the local-detection ui, threshold θ  
Out: the final status Ri 
(1) //For each node 
(2) /compute  Ci, m1,2,⋯,N(E)  and  Ri 
(3) Broadcast the geometric position (LOCi(x,y)) 
(4) Broadcast the weight of node i ,Cii 
(5) Broadcast the BPA function mi 
(6) Compute the weight of node Ci 
(7) Compute the neighboring node's belief probability 

m1,2,⋯,N(E) 
(8) Determine the estimated value Ri 
(9) if  ui=1  then 
(10)       if  m1,2,⋯,N(E)≥ θ  then 
(11)              Ri=1 report event 
(12)       else Ri=0 false report 
(13)       end if 
(14)   else if  ui=0 
(15)       if  m1,2,⋯,N(E)≥ θ  then 
(16)              Ri=1 missing report 
(17)       else Ri=0 none event 
(18)       end if 
(19) end if 
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become more and more popular in wireless sensor networks. Thus, the inter-node cooperation 
and information sharing play an essential role in the collaboration. In this case, one node's 
stauts is greatly affected by its neighboring nodes within the surrounding area. Existing 
neighborhood-based detection methods [17-20] only consider the position relationship or 
different sensor information attributes between nodes. However, in an actual environment, the 
neighboring nodes are likely to make missing or false information errors that would affect the 
detection accuracy of the central node. Therefore, we propose a dual weighting model that 
incorporates the weight of node i,i.e.,Cii, and the relative weight of its neighboring node j, 
i.e.,Cij. The recorded node weight Ci is as follows: 
                                                               

1 (1 )

N

ij j
j

i ii

C u
C r C r

N
== × + −
∑                                                   

(12)
 

Supposing the node i have N neighboring nodes, and r is the node self-weighting factor 
being set to r=0.5. Furthermore, the node weight Cii is determined by its own status, where Cii 
is set to zero for a failed node, and one for a normal node. Because the local decision results of 
one node may switch between right and wrong, Cii should not be unchangeable. Using 
equation (13), the weight of node i can be calculated as 
 
                                                               x

iiC e−=                                                                                  (13) 
 
Where x (x ≥ 0) represents the intermediate variable for calculating Cii with initial value of 
zero. If node detection is in error, x increases, which reduces the weight of the node; if node 
detection is correct, x=0, the value of x does not change, and its weight is still at maximum; if 
node detection is correct and x>0, x decreases, which increases its weight; if an accidental 
error occurs at the node, its weight quickly returns to normal value. When the value of Cii is 
less than the threshold εerror, the node is considered an invalid node, and it is no longer included 
in event detection. 

In addition, taking account of the spatial correlation between nodes, it is reasonable to 
beliveve that the geographical distribution of network nodes is highly correlated to the 
accuracy of event detection. Therefore, the weight of a node is related to its spatial distribution. 
The relative weight Cij, which indicates the impacts caused by the neighboring node j on the 
central node i, is calculated using the neighboring node's own weight Cjj and  the distance 
weight wji as follows: 

 
                                                            ij jj jiC C w=                                                                                  (14) 
 
The weight wji is obtained by following equations:  
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Where Distanceji is the Euclidean Distance calculated based on the geometric position of 
nodes j and i as coordinates(x,y), and N is the amount of neighboring nodes for the node i. 
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4. Experiments and Evaluation 

4.1 Experimental Setup 
From this section, a set of simulation experiments are conducted to evaluate the performance 
of the proposed algorithm DSFTED. The sensor network used in the simulation contains 1024 
nodes randomly deployed (uniform distribution) in a grid region of 32 meters by 32 meters. 
The communication range between nodes was set to √2 meters resulting in the fault-tolerance 
range that each interior node has four neighbors that are used in the collaborative detection 
mechanism. Fig. 1 shows a sample scenario of the simulated event region. In the figure, one 
source event was placed at the coordinate (18.5, 18.5) and the sensing range was set to 8 
meters. The black circles in the figure indicate normal nodes and the squares represent failed 
nodes, wherein the sensor failure probability for each node can be flexibly preset to meet the 
various demands of test.  

The node self-weighting factor r and the self-weight threshold εerror should be set 
reasonably in the experiment. The node weight Ci contributes variously along with different 
self-affecting factors and distance weight W, which is shown in Fig. 2. As can be seen in the 
figure, a larger W means that it is closer to the central node and the weight is greater; the larger 
the self-weighting factor r, the greater is the weight of the node, which set r=0.5. If the node is 
determined to be a failed node, x is increased by one and the node is removed from calculation. 
This can cause erroneous judgment. Therefore, in order to accurately detect and quickly 
eliminate failed nodes, the self-weight value threshold is set to εerror=0.3. If the self-weight 
value of the node is below the threshold, the node stops communicating with its neighboring 
nodes. 

0 5 10 15 20 25 30
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5

10

15

20

25

30

 
  Fig. 1. A sample scenario of event region for a simulated WSN with 32 ×32 nodes 
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Fig. 2. Relationship between node weight and intermediate variable x 

 
The detection window is supposed to be T=1s,  and the maximum amount of data collected 

during the time window is m=10. The node sampling value in the normal region follows the 
normal distribution N(μn,σn) , where μn =10, σn =1, and the nodes in the event region follow  
N(μf,σf), where μf =30, σf =1. Following this, the rules of majority voting are used to obtain the 
node -local-decision threshold value Cth=8 and the event decision threshold value θ=1. 
Without loss of generality, all simulation results are obtained by averaging over 100 runs with 
varying node failure probabilities. 

4.2 Performance Metrics 
In order to evaluate the node’s detection performance in the event region, the event region 
detection rate, event false alarm rate, event miss-alarm rate, and event fault detection rate were 
set up as performance evaluation indicators for the fault-tolerant algorithm: 

• The event region detection rate, represented by ERDR, indicates the ratio between the 
number of normal nodes that correctly reported the occurrence of an event and the 
number of normal nodes within the event region. 

• The event false alarm rate, represented by EFAR, indicates the ratio between the 
number of nodes that detected an event and the total number of nodes in the event 
region when no event occurs. 

• The event missing-alarm rate, represented by EMAR, indicates the ratio when an 
event occurs between the number of nodes that failed to detect an event and the total 
number of nodes in the event region. 

• The event fault detection rate, represented by EFDR, indicates the ratio between the 
number of nodes that accurately identified a fault and the total number of faulty nodes. 

To evaluate detection effectiveness at event boundaries, the event boundary detection rate 
and false detection rate are used as the two indicators to perform the performance analysis: 

• The event boundary detection rate, represented by EBDR, indicates the ratio of event 
boundary nodes detected to event boundary nodes. 

• The event boundary false detection rate, represented by EBMAR, represents the ratio 
between the number of boundary nodes that have not detected and the total number of 
event boundary nodes. 
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4.3 Performance of Event Detection 
The highlight of the proposed algorithm DSFTED took both the contribution of neighboring 
node and the spatial correlation between nodes into consideration. The algorithm also adopts 
distributed computing ideas that collaborative event detection scheme can be achieved. One 
hop communication is considered which means each node only contact with its neighboring 
nodes.  

The proposed algorithm DSFTED is implemented in the Matlab-based environment using 
the experimental setting as section 4.1. The simulation results are compared with the optimal 
threshold event detection algorithm (OTDS) in reference [9] and the DFDW algorithm in 
reference [17]. 

Fig. 3, 4 and 5 show several snapshots of the event detection results using OTDS, DFDW, 
and the proposed algorithm, respectively, with 20% node fault rate and red solid dots 
representing the normal nodes that misjudged as errors, that is, the newly introduced error 
nodes. Blue solid square indicators represent the identified faulty nodes. As can be seen from 
Fig. 3, 4 and 5, when the sensor node fault rate reaches 0.2，more faulty nodes are accurately 
detected, and lower error nodes are introduced using the proposed algorithm.  

According to the algorithm performance assessment indicators, we conducted four groups 
of experiments in order to compare OTDS, DFDW, and DSFTED. 

As shown in Fig. 6, when the node fault rate is below 0.1, the event region detection rate of 
all three methods is above 0.78. However, as the fault rate continues to increase, the event 
detection performance of the OTDS and DFDW algorithms decreases significantly, which 
undeniably indicates that the DSFTED algorithm has better detection performance. 
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Fig. 3. The results of   
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Fig. 4. The results of     

DFDW algorithm 
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     DSFTED algorithm
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Fig. 6. The ERDR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 
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Fig. 7 shows that when the node fault rate reaches 15%, the fault identification rate is 85% 
for OTDS and 95% for DFDW, whereas the proposed DSFTED algorithm reaches 
approximately 97%, which is a significant increase. This is because the majority of the failed 
nodes can be eliminated according to the size of the node weight. When the weight of a 
particular node is lower than the threshold value εerror=0.3, other nodes do not use the data 
collected from that node，which reduces the impact of the failed node on other normal nodes, 
so that the fault tolerance capability of the algorithm increases. 
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Fig. 7. The FDR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 

 
Fig. 8 shows that when the node fault rate is below 15%, the false alarm rates calculated 

using the DFDW algorithm and the algorithm proposed this paper are significantly lower than 
for OTDS. In addition, when the node fault rate is high, the proposed algorithm always 
generates relatively low false alarm rates. 
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Fig. 8. The EFAR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 

 
Fig. 9 shows that as the node fault rate increases, the miss-alarm rate from OTDS tends to 

increase. When the node fault rate is 15%, OTDS reaches 37%, DFDW reaches approximately 
21%, and the proposed algorithm reaches 14%, which is significantly lower than the other two 
algorithms. This is because, when the status of the node spatial distribution and the node status 
are considered, after the effect on event detection achieved, a few failed nodes can be 
eliminated to some extent, whereas a few nodes determined as failed can be recovered to 
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normal nodes in order to avoid miss-alarm errors. 
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Fig. 9. The EMAR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 

 

4.4 Performance of Event Boundary Detection 
The three algorithms are also applied on event boundary nodes within the same experimential 
scenario as bofore. Fig. 10 shows the relationship between event boundary detection rate and 
the network fault rate. It can be noticed that the event detection rate calculated with the 
proposed algorithm is far better than with the OTDS and DFDW algorithms. For example, 
when the fault rate is 15%, the event detection rate from DSFTED is approximately 80%, 
whereas OTDS and DFDW are similar, and both are lower than 58%. Fig. 11 represents the 
relationship between missing-alarm rate and the network fault rate. It shows that DSFTED 
under a considerably high fault rate still gains a relatively lower miss-alarm rate when 
comparing with OTDS and DFDW algorithms. The reasons are:  

• The D-S evidence theory-based fault tolerance model is effective in resolving the 
uncertainty problem inhered in the event boundary node readings. Through 
incorporation of the double-weight model that assigns nodes with different weights 
results in diverse beliefs being fused to improve the discrimination of events occurred 
on the edge of event region;  

• The introduced node weight model is not only based on network topology, but also 
adaptable to node changes. Data collected from nodes with weight less than εerror=0.3 
are removed from the event boundary algorithm. In particular, after the prior detection, 
the faulty nodes will not have an impact on event boundary detection in the next round, 
and the nodes misjudged as failed nodes can be restored to normal nodes and rejoin 
the event decision-making. 
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Fig. 10. The EBDR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 
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Fig. 11. The EBMAR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 

 
Fig. 12 presents the event boundary detection rate (EBDR) versus detection range using 

the OTDS, DFDW, and DSFTED algorithms when the node fault rate reaches 20%. 
Considering the same event region as defined before with a center at (18.5, 18.5) and the 
radius being set as eight, the nodes at the edge of different ranges varying from 4 to 14 (3< 
range<15) are examined respectively. The results indicate the same trend for all the 
algorithms that the detection rate decreases with the increasing range. When the range is 
beyond the event region (range ≥ 8), the detection rate of DSFTED declines very fast 
compared with the other two algorithms. This can be reasonably explained that the nodes 
inside the event region are inclined to be supported with more consentaneous evidences from 
its neighbors that finally authenticate such nodes as events. In contrast, the nodes approaching 
the edge of the event region are more likely to be affected by confused evidences that cause the 
decrease of event detection rate. As shown in the figure, a sudden change occurs for all the 
three algorithms at the event edge (range=8). However, the proposed DSFTED algorithm 
behaves more seriously. It seems that an abrupt decline point divides the detection curve into 
two parts that the upper represents the inside of the event region and the lower represents the 
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outside of the event region. Therefore, such abrupt decline can be regarded as a crucial feature 
which may be applied to identify event boundary nodes from other nodes. Although this paper 
did not discuss too much on this issue, the DSFTED algorithm could be further prompted to 
deal with it. 
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Fig. 12. The EBDR of OTDS algorithm [9], DFDW algorithm [17] and DSFTED algorithm 

 

4.5 Energy Consumption Analysis  
Wireless sensor networks are usually embodied with severe energy constraints since the 
sensor nodes often operate with finite battery resources and limited recharging. An effective 
energy using and saving mechanism will be beneficial to promoting life cycle of network 
system. The energy concerns can be addressed by engineering design at all layers including 
data sensing, data processing and message passing. It has been recognized that energy savings 
can be obtained by dispersing computation within the network in a distributed form, such as 
the above discussed algorithms OTDS [9], DFDW [17] and the proposed algorithm DSFTED 
as well. Assuming all the three algorithms are deployed in a region of interest sharing the same 
environment and node sensing abilities, the cost of data sensing for each algorithm can be 
regarded as equal, and then such cost may be safely ignored when making energy consumption 
analysis. Additionally, the computing complexity of each algorithm can be proved to be linear 
that the data processing only contributes a little to the energy cost. Therefore, it is reasonable 
to believe that the majorities of energy cost in a sensor network are due to the data 
communication between nodes.  
     To comprehensively understand the data exchanging schemes and make comparative 
analysis of energy consumption caused by communication, some definitions should be 
reclaimed here. Considering a sensor network composed of n nodes and each node owns N 
neighbors, the data exchanging usually arises between the interior node and its neighboring 
nodes. Thus, the communication cost mostly depends on the data exchanging frequency, the 
more frequent the node communicates with its neighbors, the more energy it cost. Given a 
synchronized time window, just as the predefined detection window T, the data exchanging 
frequency of each algorithm can be examined. In the algorithm of OTDS, each node sampling 
will trigger a binary decision involving one round of data exchanging between the node and its 
N neighbors. During the time window T, the total amount of data exchanging of the entire 
network generated by OTDS can be calculated as n·N·F/T, where F represents the sampling 
times within the window T, namely f = F/T indicates the data exchanging frequency. The 
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DFDW algorithm has a simlar triggering sheme like OTDS that it is endowed with the same 
data exchanging frequency, i.e. F/T. However, a dual-neighborhood detection scheme was 
incorparated in DFDW. Before a node gather information from its own neighbors to make the 
final decison, the node's neighboring nodes should finish one round data collection from their 
external neighbors. Then, the amnout of network nodes involved in the communication to 
accomplish once detection is denoted as N' satisfying N ≤ N' ≤N+ N2, and the statistical result 
of data exchanging is n·N'·F/T. Unlike the two algorithms as discussed before, the proposed 
algorithm DSFTED uses belief probability instead of binary value as evidence to make the 
fusing decision, and only one time data exchanging need to be performed for the decision 
during the window T. So, the amount of data exchanging can be calculated using n·N·1/T. 
Without loss of generality, it is acceptable to use the amnout of data exchanging to represent 
the energy consumption of the sensor network as summarized in Table 3. 

 
Table 3. Comparison of energy consumption 

Algorithm Energy cost Ratio 

OTDS n·N·F/T 1 

DFDW n·N'·F/T  (N ≤  N' ≤ N+ N2) N'/N 

DSFTED n·N·1/T 1/ F 
 
     Being divided by the common factor n·N·F/T, the energy cost can easily be transfered to the 
resulting ratio as shown in the lefe column of the table. Thus we can see that DFDW cost more 
energy than OTDS because the ratio value N'/N is bigger than one. The proposed algorithm 
may rank the minimum cost if F > 1 or 1/ F < 1. In general, we believe the value of F is larger 
than one since both OTDS and DFDW cannot make their decisions only using once data 
sampling and exchanging within the time window T. It is necessary to point out that the 
analysis does not consider the message load during the communication since we may 
reasonably assume a uniform data format is applied in all communications and the length of 
message is short enough to be ignored. Although a relatively tough analysis and comparison 
have been demonstrated, we may safely conclude that the proposed algorithm can maintain the 
energy consumption in a considerably lower level which is acceptable in practical 
applications. 

5. Conclusion 
This paper introduced a D-S evidence theory-based weighted fault tolerance mechanism that 
can process uncertain states, and therefore, it is capable of achieving both event and event 
boundary detections. The proposed algorithm DSFTED applies a double-weight model to 
characterize the impact of both node geographical distribution and node self-state, where the 
spatio-temporal correlations within nodes are modeled as evidences particularly using BPA 
functions. The experimental results showed that in case of high faulty node rate, the approach 
could achieve lower miss-alarm rate and false alarm rate, and higher fault identification rate. 
Further research work can be conducted on the issue of data error correction during 
transmission, and on methods to prolong network lifetime to ensure maximized correction 
effect. 
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