• Title/Summary/Keyword: High purity powder

Search Result 207, Processing Time 0.028 seconds

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Synthesis and Properties of Mullite from Kaolin by Boehmite Gel Coating (Boehmite Gel Coating법에 의한 Kaolin으로부터 Mullite의 합성 및 그 특성)

  • 임병수;김인섭
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 1997
  • In order to apply synthesis technique of the high purity ceramic powder to the traditional ceramic powder, mullite powder which is widly used for refractory materials was synthesized. Boehmite and Hadong kaolin with high alumina content were used as starting materials and gel coating method was tried to produce the mullite powder. As a result, the mullite powder of high quality was successfully obtained at 1350℃. The unreacted silica and cornudum were not observed in the synthesized mullite powder, mullite content was more than 80% when the starting materials were sintered at 1700℃. Their properties showed bulk specific gravity of 2.56, water absorption of 1.9%, and 3-point flexual strength of 169 MPa. It is thought that that their good properties are applicable to refractory materials of high quality.

  • PDF

Optimization of Binder Burnout for Reaction Bonded Si3N4 Substrate Fabrication by Tape Casting Method

  • Park, Ji Sook;Lee, Hwa Jun;Ryu, Sung Soo;Lee, Sung Min;Hwang, Hae Jin;Han, Yoon Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.435-440
    • /
    • 2015
  • It is a challenge from an industrial point of view to fabricate silicon nitride substrates with high thermal conductivity and good mechanical properties for power devices from high-purity Si scrap powder by means of thick film processes such as tape casting. We characterize the residual carbon and oxygen content after the binder burnout followed by nitridation as a function of the temperature in the temperature range of $300^{\circ}C-700^{\circ}C$ and the atmosphere in a green tape sample which consists of high-purity Si powder and polymer binders such as polyvinyl butyral and dioctyl phthalate. The optimum condition of binder burnout is suggested in terms of the binder removal temperature and atmosphere. If considering nitridation, the burnout of the organic binder in air compared to that in a nitrogen atmosphere could offer an advantage when fabricating reaction-bonded $Si_3N_4$ substrates for power devices to enable low carbon and oxygen contents in green tape samples.

A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구)

  • Kim, Youn-Che;Song, Young-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

Direct Preparation of Fine Nickel Powder by Slurry Reduction Method for MLCC (슬러리환원법에 의한 MLCC용 미세 니켈 분말 직접 제조)

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Kim, Sang-Bae;Ahn, Jea-Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Fine nickel metal powder of uniform morphology, narrow size distribution, and high purity was prepared from high purity metal solution. Slurry reduction method for the synthesis of metal powder was applied with a special interest in their fine and spherical shape. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Well dispersed ultrafine nickel powder with the particle size range of 100~200 nm was produced from Ni-hydrazine precursor using hydrazine as a reductant for 90 min reaction in 4.5 M NaOH solution.

Study on the Preparation of Copper Sulfate by Copper Powder using Cation Membrane Electrowinning Prepared from Waste Cupric Chloride Solution (염화동 폐액으로부터 양이온격막 전해 채취된 구리 분말을 이용한 황산동의 제조방법 연구)

  • Kang, Yong-Ho;Hyun, Soong-Keun
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.62-72
    • /
    • 2019
  • Generally, $H_2SO_4$ and Cu metal are used as raw materials for producing copper sulfate. The study relates to a method for producing copper sulfate using electrowinning from a waste solution of copper chloride. Uses are used for copper plating for industry, plating, feed, agriculture, electronic grade PCB. Conventional methods for producing copper sulfate have a problem of a large amount of waste water and a high energy cost. A study on the production method of copper sulfate ($CuSO_4$), which is the most used among copper (Cu) compounds, has a low process operation ratio, a small amount of waste water, and a simple manufacturing process. It is easy to remove Na, Ca, Mg, and Al as impurities by using a cationic membrane. At the same time, high purity copper powder could be recovered by an electrowinninng method. Using the recovered copper powder, high purity copper sulfate could be produced.

Synthesis of Nanosized Powders by Wire Explosion (전기폭발(wire explosion)에 의한 나노분말 제조)

  • Cho, Chu-Hyun;Rim, Geun-Hie;Lee, Hong-Sik;Jiang, WeiHua
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2057-2059
    • /
    • 2005
  • Silver nanosized powder have been synthesized using wire explosion technology. The discharge system of 10kw (10uF, 20kV, 0.5 shots/s) was set up for mass production of 300g/h. The high purity silver powder was collected and separated by cyclone and fabric filters.

  • PDF

Studies on the Synthesis of High Purity and Fine Mullite Powder (I) (고순도 초미립자 물라이트 분말 합성에 대한 연구 (I))

  • 김경용;김윤호;김병호;이동주
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

A Studyon Synthesis of High Purity $\beta$-SiC Fine Particles from Ethyl Silicate(II) (Powder Properties, Reaction Type and Activation Energy) (Ethyl Silicate를 이용한 고순도 $\beta$-SiC미분말 합성에 관한 연구(II) (분말의 특성, 반응형식 및 활성화에너지))

  • 최용식;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.195-200
    • /
    • 1989
  • The Silica-Carbon mixture was made with addition of carbon black in the composition which monodispersed spherical fine silica was formed by the hydrolysis of ethylsilicate, mole ratio of Carbon/Alkoxide was 3.1 and $\beta$-SiC powder was synthesized by reacting this mixture at 1,350~1,50$0^{\circ}C$ in Ar atmosphere. The results of this study are as follow : (1) The purity of synthesized $\beta$-SiC powder was above 99.98% and it was in cubic modification with lattice constant of 4.3476$\AA$. (2) The rate-controlling steps varied with the reaction temperature for the syntehsis of $\beta$-SiC in this study ; nucleation and growth of $\beta$-SiC at 1,350~1,40$0^{\circ}C$, interfacial reaction at 1,45$0^{\circ}C$ and diffusion described by Jander Equation at 1,50$0^{\circ}C$. (3) When the rate-determining step was nucleation and growth, the activation energy was about 87.8kcal/mol.

  • PDF

Mineralogical Analysis and Mechano-Chemical Purification of Natural Silica Ore for High Purity Silica Powder

  • Park, Jesik;Lee, Churl Kyoung;Lee, Hyun-Kwon
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.306-310
    • /
    • 2016
  • To produce 4N grade high-purity silica powder from natural ore, the mineralogical characteristics of natural silica ore were investigated and their effects on the purification process were revealed. The Chinese silica mineral ore used was composed of iron and aluminum as main impurities and calcium, magnesium, potassium, sodium, and titanium as trace impurities; these trace impurities generally exist as either single oxides or complex oxides. It was confirmed that liberation and acidic washing of the impurities were highly dependent on the particle size of the ground silica ore and on its mineralogical characteristics such as the distribution and phases of existing impurities. It is suggested that appropriate size reduction of silica ore should be realized for optimized purification according to the origin of the natural silica ore. A single step purification process, the mechano-chemical washing (MCW) process, was proposed and verified in comparison with the conventional multi step washing process.