DOI QR코드

DOI QR Code

Study on the Preparation of Copper Sulfate by Copper Powder using Cation Membrane Electrowinning Prepared from Waste Cupric Chloride Solution

염화동 폐액으로부터 양이온격막 전해 채취된 구리 분말을 이용한 황산동의 제조방법 연구

  • Received : 2018.12.19
  • Accepted : 2019.01.17
  • Published : 2019.02.28

Abstract

Generally, $H_2SO_4$ and Cu metal are used as raw materials for producing copper sulfate. The study relates to a method for producing copper sulfate using electrowinning from a waste solution of copper chloride. Uses are used for copper plating for industry, plating, feed, agriculture, electronic grade PCB. Conventional methods for producing copper sulfate have a problem of a large amount of waste water and a high energy cost. A study on the production method of copper sulfate ($CuSO_4$), which is the most used among copper (Cu) compounds, has a low process operation ratio, a small amount of waste water, and a simple manufacturing process. It is easy to remove Na, Ca, Mg, and Al as impurities by using a cationic membrane. At the same time, high purity copper powder could be recovered by an electrowinninng method. Using the recovered copper powder, high purity copper sulfate could be produced.

일반적으로, 황산동을 제조하기 위한 원료는 $H_2SO_4$ 및 Cu 금속이 사용된다. 본 연구는 폐산, 폐염화동 폐기물부터 전해 채취법을 이용하여 황산동을 제조하는 방법에 관한 것이다. 황산구리의 용도는 공업용, 도금용, 사료용, 농업용, 전자급 PCB 동도금에 사용된다. 종래의 황산동 제조법은 다량의 폐수 및 에너지 비용이 높은 문제점이 있다. 구리(Cu) 화합물 중에서 가장 사용이 많이 되는 황산동($CuSO_4$)의 제조 방법에 관한 연구로서, 공정 운전비가 적고, 폐수 발생이 적으며, 제조 공정이 간단하다. 양이온 맴브레인을 이용하여 Na, Ca, Mg, Al을 불순물로서 제거하기 쉽다. 또한 동시에 전해 채취 방법으로 고 순도 구리 분말을 회수 할 수 있었다. 회수 된 구리 분말을 사용하여 고 순도 황산동을 제조 할 수 있었다.

Keywords

RSOCB3_2019_v28n1_62_f0001.png 이미지

Fig. 1. Schematic flow sheet for copper sulphate from waste acids.

RSOCB3_2019_v28n1_62_f0002.png 이미지

Fig. 2. New method for producing copper sulphate from waste acids.

RSOCB3_2019_v28n1_62_f0003.png 이미지

Fig. 3. Model concentration profile at the membrane-solution interface cation exchange membrane.

RSOCB3_2019_v28n1_62_f0004.png 이미지

Fig. 4. Producing copper power from electrowinning.

RSOCB3_2019_v28n1_62_f0005.png 이미지

Fig. 5. Cu concentration at 3.5 V electrowinning.

RSOCB3_2019_v28n1_62_f0006.png 이미지

Fig. 6. Ampere change at 3.5 V electrowinning.

RSOCB3_2019_v28n1_62_f0007.png 이미지

Fig. 7. Cu concentration at 4.5 V electrowinning.

RSOCB3_2019_v28n1_62_f0008.png 이미지

Fig. 8. Ampere change at 4.5 V electrowinning.

RSOCB3_2019_v28n1_62_f0009.png 이미지

Fig. 9. Cu concentration at 3.5 to 4.5 V electrowinning.

RSOCB3_2019_v28n1_62_f0010.png 이미지

Fig. 10. Ampere change at 3.5 to 4.5 V electrowinning.

RSOCB3_2019_v28n1_62_f0011.png 이미지

Fig. 11. producing copper sulfate from copper powder.

Table 1. Chemical composition of CuCl2

RSOCB3_2019_v28n1_62_t0001.png 이미지

Table 2. Experiment condition

RSOCB3_2019_v28n1_62_t0002.png 이미지

Table 3. Chemical composition of Cu powder

RSOCB3_2019_v28n1_62_t0003.png 이미지

Table 4. Chemical composition of Cu powder

RSOCB3_2019_v28n1_62_t0004.png 이미지

Table 5. Chemical composition of CuSO 4

RSOCB3_2019_v28n1_62_t0005.png 이미지

References

  1. Jin-Yeon Lee, et al., 2018 : Study on Synthesis of Fine Copper Powder by Electro-refining from Copper Containing Sludge, J. of Korean Inst. of Resources Recycling, 27(6), pp.44-52. https://doi.org/10.7844/KIRR.2018.27.6.44
  2. Mulder, M., 1991 : Basic Principles of Membrane Science, Kluwer Academic Publisher, p.275.
  3. Cowan, D. A. and Brown, J. H., 1959 : Effect of turbulent on limiting current in electrodialysis cells, Ind. Eng. Chem., 51, pp.1445. https://doi.org/10.1021/ie50600a026
  4. Tanaka, Y., 2003 : Concentration polarization in ionexchangemembrane electrodialysis the events arising in a flowing solution in a desalting cell, J. of Membrane Science, 216, pp.149-164. https://doi.org/10.1016/S0376-7388(03)00067-X
  5. Tanaka, Y., 2002 : Current density distribution, limiting current density and saturation current in an ion-exchange membrane electrodialye, J. of Membrane Science, 210, pp.65-75. https://doi.org/10.1016/S0376-7388(02)00376-9
  6. Toshikatsu Sata : Ion Exchange Membranes Preparation, Characterization, Modification and Application pp.220-223.
  7. Barragan, V.M. and Bauza, C.R., 2002 : Current-voltage curves for a cation-exchange membrane in methanol-water electrolyte solutions. J. Colloid Interface Sci. 247, pp.138-148. https://doi.org/10.1006/jcis.2001.8065
  8. Belova, E. I., Lopatkova, G. Y., Pismenskaya, N. D. et al., 2006 : Effect of anion exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110, pp.13458-13469. https://doi.org/10.1021/jp062433f
  9. Chamoulaud, G. and Bélanger, D., 2005 : Modification of ion exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current-voltage curves. J. Colloid Interface Sci. 281, pp.179-187. https://doi.org/10.1016/j.jcis.2004.08.081
  10. Choi, E.-Y., Strathmann, H., Park, J. M. et al., 2006 : Characterization of non-uniformly charged ion exchange membranes prepared by plasma-induced graft polymerization. J. Membr. Sci. 268, pp.165-174. https://doi.org/10.1016/j.memsci.2005.06.052
  11. Choi, J.-H., Kim, S.-H., and Moon, S.-H., 2001 : Heterogeneity of ion-exchange membranes: the effects of membranes heterogeneity on transport properties. J. Colloid Interface Sci. 241, pp.120-126. https://doi.org/10.1006/jcis.2001.7710
  12. Ibanez, R., Stamatialis, D. F., and Wessling, M., 2004 : Role of membrane surface in concentration polarization at cation-exchange membranes. J. Membr. Sci. 239, pp.119-128. https://doi.org/10.1016/j.memsci.2003.12.032
  13. Krol, J. J., Wessling, M., and Strathmann, H., 1999 : Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 162, pp.155-164. https://doi.org/10.1016/S0376-7388(99)00134-9
  14. Krol, J. J., Wessling, M., and Strathmann, H., 1999 : Concentration polarization with monopolar ion-exchange membranes: current-voltage curves and water dissociation. J. Membr. Sci. 162, pp.145-154. https://doi.org/10.1016/S0376-7388(99)00133-7
  15. Park, J.-S., Choi, J.-H., Yeon, K.-H. et al., 2006 : An approach to fouling characterization of an ion exchange membranes using current-voltage relation and electrical impedance spectroscopy. J. Colloid Interface Sci. 294(1), pp.129-138. https://doi.org/10.1016/j.jcis.2005.07.016
  16. Rubinstein, I., Zaltzman, B., Pretz, J. et al., 2002 : Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation-exchange electrodialysis membrane. Rus. J. Electrochem. 38, pp.853-863. https://doi.org/10.1023/A:1016861711744
  17. Tanaka, Y., 2002 : Water dissociation in ion-exchange membrane electrodialysis. J. Membr. Sci. 203(1-2), pp.227-244. https://doi.org/10.1016/S0376-7388(02)00011-X

Cited by

  1. Hydrochloric Acid Leaching Behaviors of Copper and Antimony in Speiss Obtained from Top Submerged Lance Furnace vol.10, pp.10, 2019, https://doi.org/10.3390/met10101393