• Title/Summary/Keyword: High power application

Search Result 2,204, Processing Time 0.03 seconds

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbines

  • Lee, Kihyun;Jung, Kyungsub;Suh, Yongsug;Kim, Changwoo;Cha, Taemin;Yoo, Hyoyol;Park, Sunsoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.386-387
    • /
    • 2013
  • This paper provides a comparison of high power semiconductor devices in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor devices of IGBT module type, IGBT press-pack type, and IGCT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on neutral-point clamed 3-level back-to-back type voltage source converter supplied from grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through the loss analysis considering both conduction and switching losses under the given operating conditions of 5MW-class PMSG wind turbines, particularly for the application in offshore wind farms. The loss analysis is confirmed through PLECS simulations. The comparison result shows that IGBT press-pack type semiconductor device has the highest efficiency and IGCT has the lowest cost factor considering the necessary auxiliary components.

  • PDF

Dynamic Paralleling Behaviors of High Power Trench and Fieldstop IGBTs

  • Wu, Yu;Sun, Yaojie;Lin, Yandan
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.788-795
    • /
    • 2014
  • This paper demonstrates the dynamic behaviors of paralleled high power IGBTs using trench and fieldstop technologies. Four IGBTs are paralleled and standard deviation is adopted to represent the imbalance. Experiments are conducted under three different operation conditions and at different temperatures ranging from $-25^{\circ}C$ to $125^{\circ}C$. The experimental results show that operation at very low and very high temperatures usually aggravates the switching behaviors. There is a trade-off between the balance and the losses at low temperatures. These results can help in the design of heat sinks in paralleling applications confronting very low temperatures.

Simulation of High-Frequency Induction-Heating Application Power Supply at 2700kW Power (2700kW급 고주파 유도가열장치의 전원시스템 시뮬레이션)

  • Lee, K.S.;Koh, H.S.;Lee, Y.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.189-191
    • /
    • 1998
  • The development of the high- frequency induction-heating for 2700kW power range intend to make localization at forging and rolling mill part by technical innovation. And, the development makes to increase our's competitive power at technique, quality and cost. This paper describes the heart of high-frequency induction-heating technique, switching technique, a few problem in common using as an unsatisfied technique, load adjustment technique, system control, diagnostic system and auto-interface etc.

  • PDF

Analysis of Current Distribution of HTSC Power Cable Considering Shield Layer (차폐층을 고려한 고온초전도 전력 케이블의 전류분류 해석)

  • Lee, Jong-Hwa;Lim, Sung-Hun;Ko, Seok-Cheol;Park, Chung-Ryul;Han, Byoung-Sung;Hwang, Si-Dole
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.12-14
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of import ant parameters in high-temperature superconduting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and AC loss. In this paper, the transport current distribution at conducting layers was investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer and compared with the case of without shield layer. The transport current distribution due to of the contact resistance and the pitch was improved in the case of HTSC power cable with shield layer from the analysis.

  • PDF

A New Drive Technology of Power Transistor Family Devices for Speed-up of the Output Frequency (출력주파수의 고주파화를 위한 전력용 Transistor Family의 구동기술)

  • Yoo, Dong-Wook;Kim, Dong-Hee;Kweon, Soon-Man;Byun, Young-Bok;Bae, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.539-542
    • /
    • 1987
  • This paper presents driving circuits technology to enable high speed drive of MOSFET, IGBT(Insulated Gate Bipolar Transistor) and SIT(Static Induction Transistor). In addition to, it demonstrates application circuits(high frequency resonant type inverters, ultrasonic power supply etc.) using the, developing drive circuits.

  • PDF

A Study on Analysis of Air Flow for Wind Power System by Shape of Super High-rise building (초고층건물에서의 풍력발전 적용을 위한 건물형태별 기류분석)

  • Jang, Ho-Jin;Lee, Dong-Yun;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.42-47
    • /
    • 2011
  • This study aims to choose installation location of wind power system and analyze influence factors of wind power system by shape of super high-raise building by using CFD simulation. As a result of this study, wind power system is more applicable to streamlined building than normal building. Round openings are seemed to be the most efficient shape for building integrated wind power system in types applying venturi effect. Safety and vibration should be considered in the case of application of wind power system between the buildings.

  • PDF

Power Line Application using OFDM Technique (OFDM 방식을 이용한 전력선 통신 시스템에 관한 연구)

  • Noh, Sung-Ho;Lee, Dong-Wook;Ahn, Do-Rang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3121-3123
    • /
    • 2000
  • Power line communications is a topic which has been studied for many years, However. the technology has not been widely adopted for data networking in homes and small businesses due to low speed. low functionality. and other barriers. Recently. with a proper technology. it is shown that the power line infrastructure can also be served as a high-speed communications medium. This paper describes a transmission scheme for power lines that is based on orthogonal frequency division multiplex(OFDM) technique. This technique can be used for high-speed data communication over the power line. This paper also presents an adaptive tracking algorithm which allocate bits and power adaptively according to the channel characteristics. The performance of the proposed scheme has been demonstrated by some simulations with taking modeled channel conditions into account.

  • PDF

The Application of Preventative and Diagnostic System for 765kV Substation (변전기기 예방진단 시스템의 적용 - 765kV 변전소 예방진단 시스템)

  • Hweon, D.J.;Choi, I.H.;Yoo, Y.P.;Jung, S.H.;Choi, Y.J.;Choi, D.H.;Kim, K.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1885-1887
    • /
    • 2000
  • In this paper we introduce preventative and diagnostic systems developed to prevent substations from accidental fault of electric power transmitting apparatus. We propose monitoring and diagnostic system for ultra high voltage GIS and main transformer of 765kV substations as an example of preventative and diagnostic techniques being applied in Korea. We also present a guideline to construct and manage an expert system for this purpose. Finally, an engineering solution as a substation management support system is proposed.

  • PDF