• 제목/요약/키워드: High peak power

검색결과 913건 처리시간 0.023초

다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘 (Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter)

  • 주동명;김동희;이병국
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

중용량 발전소 터빈 속도조정율 향상을 위한 연구 (The study of a medium Power plants to Improve Turbine Speed Regulation)

  • 신윤오;김종안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.740-742
    • /
    • 1999
  • The demand for the high quality of utility electrical power has been increasing rapidly in recent years because of today's electrical energy dependent industries and most people's everyday lives based on computer systems. However, electrical power supply conditions to meet this high quality demand becomes more difficult and more due to a large portion of nuclear power plants output in total electrical power supply which normally do not respond to frequency variations, and high peak of air conditioner demands during the summer season. So the rest of power plants should be operated to show the best governor regulation performance to maintain the electrical power frequency quality.

  • PDF

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

수요경향과 온도를 고려한 1일 최대전력 수요예측 (Daily peak load forecasting considering the load trend and temperature)

  • 최낙훈;손광명;이태기
    • 조명전기설비학회논문지
    • /
    • 제15권6호
    • /
    • pp.35-42
    • /
    • 2001
  • 1일 최대전력 부하 예측 자료는 계통의 경제적 운용과 전력 감시에 필수적이므로 정확한 예측기법이 요구된다. 신경회로망이나 퍼지이론을 한 예측비법의 장점은 정도(精度)가 높고 운용하기가 편리한 점은 있으나 학습시간이 길고, 부하가 급변할 때는 예측오차가 크게 발생한다. 본 연구에서는 이러한 단점을 개선하기 위하여 새로운 예측 기법을 제시하였으며 예측결과에서 타당성이 입증되었다.

  • PDF

고전압 펄스 발생기를 위한 강유전체의 전압 출력 특성 (The Characteristics of the Output Voltage Ferroelectrics for High Voltages Pulse Generators)

  • 장동관;최순호;황선묵;허창수
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1408-1412
    • /
    • 2013
  • High power pulse generating technology is to accumulate the energy for relatively long and then to create a strong force by emitting the energy very fast. High power pulse generating technology has recently been using in various fields like environments, industry, research, military and so on. Numerous studies about high power pulse generators have already been performed and commercialized in various conditions. However, in aspect of their size and weight, it is hard to carry the generators which currently have been developed. For these reasons, din nations like America or Russia, the researches have been performed for Ferroelectric Generators(FEG), which have relatively simple structure and are economical. To realize the ferroelectric generator, in this study, we selected the PZTs which have different physical properties respectively, and then shocked them using explosives. The PZT samples with volumes of $0.31{\sim}0.94cm^3$ were depolarized by shocked and produced the waveform that have peak voltages of 4.28 ~ 15kV. The lowest relative permittivity sample generated much higher peak voltage. And sudden voltage drops which seem to be caused by dielectric breakdown were observed in some experiments using low young's modulus samples. Also, increase in thickness led to increase in peak voltage, but the ratio of the voltage rise did not reach the ration of the thickness increase.

Diode and MOSFET Properties of Trench-Gate-Type Super-Barrier Rectifier with P-Body Implantation Condition for Power System Application

  • Won, Jong Il;Park, Kun Sik;Cho, Doo Hyung;Koo, Jin Gun;Kim, Sang Gi;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.244-251
    • /
    • 2016
  • In this paper, we investigate the electrical characteristics of two trench-gate-type super-barrier rectifiers (TSBRs) under different p-body implantation conditions (low and high). Also, design considerations for the TSBRs are discussed in this paper. The TSBRs' electrical properties depend strongly on their respective p-body implantation conditions. In the case of the TSBR with a low p-body implantation condition, it exhibits MOSFET-like properties, such as a low forward voltage ($V_F$) drop, high reverse leakage current, and a low peak reverse recovery current owing to a majority carrier operation. However, in the case of the TSBR with a high p-body implantation condition, it exhibits pn junction diode.like properties, such as a high $V_F$, low reverse leakage current, and high peak reverse recovery current owing to a minority carrier operation. As a result, the TSBR with a low p-body implantation condition is capable of operating as a MOSFET, and the TSBR with a high p-body implantation condition is capable of operating as either a pn junction diode or a MOSFET, but not both at the same time.

완전도체 박막에서 고 투과율 C형 나노 개구 설계 (Design of a High-Transmission C-Shaped Nano-Aperture in a Perfectly Electric Conductor Film)

  • 박신증;한재원
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.160-165
    • /
    • 2006
  • We have designed a high-transmission nano aperture in a perfect electric conductor film with the incident beam of 532 nm wavelength. The aperture basically has a C-shape and is known to produce a bright spot nearby the aperture in small size less than diffraction limit. The bright spot is strongly coupled with the local plasmon excited through the aperture hole. The characteristics of transmission and peak power of the aperture output were calculated using finite differential time domain (FDTD) technique, and the geometry of the aperture was determined to get a maximum transmission and peak power. To find the effect of the surface plasmon induced near by the aperture, we calculated the variations of the transmittance and the beam sizes by changing the size of the input beam irradiated on the aperture.

고효율 inverse E급주파수 체배기 설계 (Design of Inverse E Class Frequency Multiplier with High Efficiency)

  • 노희정;조정환
    • 조명전기설비학회논문지
    • /
    • 제25권11호
    • /
    • pp.98-102
    • /
    • 2011
  • This paper describes inverse E class frequency multiplier which is lower inductance and peak switching voltage than E class frequency multiplier. The frequency multiplier is designed to generate 5.8[GHz] frequency by doubling the input frequency 2.9[GHz]. The peak switching voltage of designed inverse E class frequency multiplier with 11[V] is lower 4[V] than that of E class frequency multiplier with 15[V]. The inverse E class frequency multiplier has a conversion gain 6[dB] at output power 21[dBm] and maximum 35[%] power efficiency.

OFDM 시스템에서 PAR을 줄이는 SMOPT 기법 (Selective Mapping of Partial Tones (SMOPT) Scheme for PAR Reduction in OFDM Systems)

  • 유승수;윤석호;김선용;송익호
    • 한국통신학회논문지
    • /
    • 제30권4C호
    • /
    • pp.230-238
    • /
    • 2005
  • 직교 주파수 분할 다중 접속(orthogonal frequency division multiplexing: OFDM) 시스템은 여러 부 반송파를 사용해 정보를 전송하기 때문에 각 부 반송파가 동위상으로 겹치면 최고 대 평균 전력 비율이 (peak-to-average power ratio: PAR) 커진다. 이 논문에서는 최고 줄임 톤을 (peak reduction tone: PRT) 사용한 PAR 감소 기법 가운데 하나로 부분 톤 선택 사상 (selective mapping of partial tones: SMOPT) 기법을 제안한다. 제안한 SMOPT 기법은 반복 수렴 알고리즘을 사용한 기존의 톤 예약 (tone reservation: TR) 기법보다 적은 복잡도로 구현이 가능하고, 최고 감소 부 반송파 위치에 덜 민감하다. 또한 병렬 구성이 가능하여 알고리즘 수행 시간을 단축 할 수 있다. 이 논문에서는 이를 검증하기 위해 두 가지 사례에 대한 모의실험 환경을 구성하고, 이에 따른 복잡도와 첨두 감소 부 반송파 위치, 그리고 송신 전력에 따른 PAR 감소 성능과 비트 오류율 (bit error rate: BER) 성능을 비교 분석한다.

Fully Analog ECG Baseline Wander Tracking and Removal Circuitry using HPF Based R-peak Detection and Quadratic Interpolation

  • Nazari, Masoud;Rajeoni, Alireza Bagheri;Lee, Kye-Shin
    • Journal of Multimedia Information System
    • /
    • 제7권3호
    • /
    • pp.231-238
    • /
    • 2020
  • This work presents a fully analog baseline wander tracking and removal circuitry using high-pass filter (HPF) based R-peak detection and quadratic interpolation that does not require digital post processing, thus suitable for compact and low power long-term ECG monitoring devices. The proposed method can effectively track and remove baseline wander in ECG waveforms corrupted by various motion artifacts, whereas minimizing the loss of essential features including the QRS-Complex. The key component for tracking the baseline wander is down sampling the moving average of the corrupted ECG waveform followed by quadratic interpolation, where the R-peak samples that distort the baseline tracking are excluded from the moving average by using a HPF based approach. The proposed circuit is designed using CMOS 0.18-㎛ technology (1.8V supply) with power consumption of 19.1 ㎼ and estimated area of 15.5 ㎟ using a 4th order HPF and quadratic interpolation. Results show SNR improvement of 10 dB after removing the baseline wander from the corrupted ECG waveform.