• Title/Summary/Keyword: High order panel method

Search Result 118, Processing Time 0.026 seconds

Study on Machining High-Aspect Ratio Micro Barrier Rib Array Structures using Orthogonal Cutting Method (2 차원 평판가공법을 이용한 고세장비 미세 격벽어레이구조물 가공)

  • Park, Eun-Suk;Choi, Hwan-Jin;Kim, Han-Hee;Jeon, Eun-Chae;Je, Tae-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1272-1278
    • /
    • 2012
  • The micro barrier rip array structures have been applied in a variety of areas including as privacy films, micro heat sinks, touch panel and optical waveguide. The increased aspect ratio (AR) of barrier rip array structures is required in order to increase the efficiency and performance of these products. There are several problems such as burr, defect of surface roughness and deformation and breakage of barrier rip structure with machining high-aspect ratio micro barrier rip array structure using orthogonal cutting method. It is essential to develop technological methods to solve these problems. The optimum machining conditions for machining micro barrier rip array structures having high-aspect ratio were determined according to lengths ($200{\mu}m$ and $600{\mu}m$) and shape angles ($2.89^{\circ}$ and $0^{\circ}$) of diamond tool, overlapped cutting depths ($5{\mu}m$ and $10{\mu}m$), feed rates (100 mm/s) and three machining processes. Based on the optimum machining conditions, micro barrier rib array structures having aspect ratio 30 was machined in this study.

Study on Priority Selection of Export Strategic Core Technologies for IT Fusion Next Generation Agricultural Machines (IT융합 차세대 농기계 수출전략형 핵심기술 우선순위 선정에 관한 연구)

  • Chang, Dong-Il;Cho, Byoung-Kwan;Lee, Hoon-Soo;Chung, Sun-Ok;Park, Seung-Jae;Kim, Chul-Soo;Lee, Young-Hee
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.491-499
    • /
    • 2011
  • The objective of this study was to develop the export strategic core technologies for IT fusion next generation agricultural machines by the analysis of comprehensive and cooperative systems of industries, universities, and institutes. In order to achieve the objective of this study, an expert panel was formed and operated. The first survey was conducted by the Delphi method. For this the export strategic core technologies were surveyed and analyzed using the questionnaire. Based on the results of the first survey, the second survey was conducted. The questionnaire used for the second survey was designed by results of the first survey. The results of the second survey was analyzed by AHP method. The third survey was conducted based on the second one, and the final results were analyzed and the export strategic core technologies were developed through the expert meeting. The study results showed six export strategic core technologies as the followings : 1) environment-friendly engine technology for high performance 2) high performance/high efficiency power transmission system technology 3) development of measurement system technology for safety of agricultural products 4) field application of sensor networks 5) large size combine development technology for high performance 6) quality evaluation technology for agricultural products.

TRIZ-based Improvement of Glass Thermal Deformation in OLED Deposition Process (트리즈 기반 OLED 증착 공정의 글래스 열 변형 개선)

  • Lee, Woo-Sung;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2017
  • The global small and mid-sized display market is changing from thin film transistor-liquid crystal display to organic light emitting diode (OLED). Reflecting these market conditions, the domestic and overseas display panel industry is making great effort to innovate OLED technology and incease productivity. However, current OLED production technology has not been able to satisfy the quality requirement levels by customers, as the market demand for OLED is becoming more and more diversified. In addition, as OLED panel production technology levels to satisfy customers' requirement become higher, product quality problems are persistently generated in OLED deposition process. These problems not only decrease the production yield but also cause a second problem of deteriorating productivity. Based on these observations, in this study, we suggest TRIZ-based improvement of defects caused by glass pixel position deformation, which is one of quality deterioration problems in small and medium OLED deposition process. Specifically, we derive various factors affecting the glass pixel position shift by using cause and effect diagram and identify radical reasons by using XY-matrix. As a result, it is confirmed that glass heat distortion due to the high temperature of the OLED deposition process is the most influential factor in the glass pixel position shift. In order to solve the identified factors, we analyzed the cause and mechanism of glass thermal deformation. We suggest an efficient method to minimize glass thermal deformation by applying the improvement plan of facilities using contradiction matrix in TRIZ. We show that the suggested method can decrease the glass temperature change by about 23% through an experiment.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Study on the Error Compensation in Strain Measurement of Sheet Metal Forming (박판성형 변형률 측정 오차보정에 관한 연구)

  • 한병엽;차지혜;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The strain measurement of the panel in the sheet metal forming is essential work which provides experimental data needed to die design, process design, and product inspection. To measure efficiently the complex geometry strain, the 3-dimensional automative strain measurement system, which has high accuracy in theory, but has some 3∼5% errors in practice, is often used. The object of this study is to develop the error compensation technology to eliminate the strain, errors resulted when formed panels are measured using an automated strain measurement system. To achieve the study object, the position error calibration method correcting coordinates of the grid node recognized by a camera using error functions is suggested. Then the position errors were found by calculating the difference in the position of the cube node between real coordinates and measured coordinates in toms of node coordinates and the error calibration equations were derived by regressing the position errors. In order to show the validation of the suggested position error calibration method, finite element analysis and current calibration method was performed for the initial-blankformed.

  • PDF

Development of the Experimental Driving System with PLD for PDPs (PLD를 사용한 PDP용 구동실험장치의 개발)

  • Son, Hyeon-Sung;Lim, Chan-Ho;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.48-54
    • /
    • 2004
  • We have developed a new experimental driving system in order to make an easier drive experiment of PDP. By using the system, we can design and simulate the timing of the pulse in computer environment. As a result of the designed timing, we are able to program at PLD(Programmable Logic Device) and control high-voltage FET switches. The new system can reduce the time of the pulse compared with the previous logic gate ICs that realizes switching logic through hardware. In addition, it is a much easier way of changing the timing of the pulse due to the change of the driving method. By using the developed driving system we experimented on two different things- First, the realization of ADS Driving Method that run commonly; Second, gray scale realization on the three electrodes AC PDP.

Development of Climate Change Education Program in High School Based on CLAMP Inquiry of Fossil Leaves (잎화석의 CLAMP 탐구를 통한 고등학교 기후변화 교육 프로그램 개발)

  • Yoon, Mabyong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • The purpose of this study is to develop a STEAM program for teaching climate change through CLAMP (Climate-Leaf Analysis Multivariate Program) paleoclimate inquiry in connection with high school 'Integrated Science' subject. In order to do so, we analyzed the 2015 revised national curriculum and science textbook in terms of the PDIE instructional design model, and developed the teaching-learning materials for 10 class hours through expert panel discussion and pilot test. According to the STEAM class procedure, in the situation presentation stage, the fossil leaves were collected from the dicotyledon plants near school, and the LMA (Leaf Margin Analysis) climate inquiry activity. was presented as the learning goal. During the creative design stage, students were taught about geology and leaf fossils in the study region, and CLAMP input data (31 characteristics of morphotype and leaf architectural of fossil leaves) were given. In the emotional experience and new challenge stage, we collected leaf fossils for outdoor learning, explored paleoclimate with CLAMP method, and promoted climatic literacy in the process of discussing tendencies and causes of Cenozoic's climate change. The validity of the development program was assessed (CVI .84) as being suitable for development purpose in all items through the process of establishing reliability among expert panel. In order to apply the program to the high school, a pilot test was conducted to supplement the discrepancies and to review the suitability. The satisfaction rate of the participants was 4.48, and the program was complemented with their opinions. This study will enable high school students to have practical knowledge and reacting volition for climate change, and contribute to fostering students' climate literacy.

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Development of Analysis Method for Forming of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 성형해석기술 개발)

  • Lim, S.J.;Kim, J.H.;Seong, Dae-Yong;Yang, Dong-Yeol;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.266-267
    • /
    • 2007
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. In order to simulate forming of sandwich sheet with pyramid core, an effective simulation method is required. Compared to the expensive model using solid elements, cost effective model using simplified elements such as shells and beams is developed. By comparing two models in terms of the cost and accuracy for unit cell deformation, a developed model shows some advantages over the model using solid elements. Evolution of two kind of forming limits, face buckling and core buckling are successfully expressed by developed model. Developed model is also applied in the simulation of square cup drawing and L-type bending. The corresponding experiments are carried out. Deformation shape and wrinkling behavior are compared and discussed. It is found that simulation results using a developed model are in good agreement with experiments.

  • PDF