• Title/Summary/Keyword: High order method

Search Result 8,291, Processing Time 0.051 seconds

Sensorless Vector Control of Induction Motors Using a New Reduced-Order Extended Luenberger Observer (새로운 축소 차원 확장 루엔버거 관측기를 이용한 유도 전동기의 센서리스 벡터제어)

  • Lee, Kyo-Beum;Song, Joo-Ho;Song, Joong-Ho;Choy, Ick
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.173-179
    • /
    • 2004
  • A synthesis method of the reduced-order extended Luenberger observer (ROELO) and its design procedure for a nonlinear dynamic system are presented. This paper proposes a method to reduce the order of the observer and to ! elect the observer gain matrix. The proposed algorithm is applied for high performance induction motor drives without a speed sensor The simulation and experiment results show that the proposed ROELO provides both rotor flux and rotor speed estimation with good performance.

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

DEVELOPMENT OF A HIGH-ORDER NUMERICAL METHOD IN THE QUADRILATERAL ADAPTIVE GRIDS (사각형 적응 격자 고차 해상도 수치 기법의 개발)

  • Chang, S.M.;Morris, P.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.47-50
    • /
    • 2006
  • In the aeroacoustic application of computational fluid dynamics, the physical phenomena like the crackle in the unsteady compressible jets should be based on very time-accurate numerical solution. The accuracy of the present numerical scheme is extended to the fifth order, using the WENO filter to the sixth-order central difference computation. However, the computational capacity is very restricted by the environment of computational power, so therefore the quadrilateral adaptive grids technique is introduced for this high-order accuracy scheme. The first problem is the multi-dimensional interpolation between fine and coarse grids. Some general benchmark problems are solved to show the effectiveness of this method.

  • PDF

A Study on Low Temperature Bonding of Si-wafer by Surface Activated Method (표면활성화법에 의한 실리콘웨이퍼의 저온접합에 관한연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.34-38
    • /
    • 1997
  • This paper presents a joining method by using the silicon wafer in order to apply to joint to the 3-dimensional structures of semiconductor device, high-speed , high integration, micro machine, silicon integrated sensor, and actuator. In this study, the high atomic beam, stabilized by oxidation film and organic materials at the material surface, is investigated, and the purified is obtained by removing the oxidation film and pollution layer at the materials. And the unstable surface is obtained, which can be easily joined. In order to use the low temperatures for the joint method, the main subjects are obtained as follows: 1) In the case of the silicon wafer and the silicon wafer and the silicon wafer of alumina sputter film, the specimens can be jointed at 2$0^{\circ}C$, and the joining strength is 5Mpa. 2) The specimens can not always be joined at the room temperatures in the case of the silicon wafer and the silicon wafer of alumina sputter film.

  • PDF

Fabrication of poly-crystalline silicon ingot for solar cells by CCCC method (CCCC법에 의한 태양전지용 다결정 실리콘 잉고트의 제조)

  • Shin J. S.;Lee D. S.;Lee S. M.;Moon B. M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.94-97
    • /
    • 2005
  • For the fabrication of poly-crystalline silicon ingot, CCCC (Cold Crucible Continuous Casting) method under a high frequency alternating magnetic field, was utilized in order to prevent crucible consumption and ingot contamination and to increase production rate. In order to effectively and continuously melt and cast silicon, which has a high radiation heat loss due to the high melting temperature and a low induction heating efficiency due to a low electric conductivity, Joule and pinch effects were optimized. Throughout the present investigation, poly-crystalline Si ingot was successfully produced at the casting speed of above 1.5 mm/min under a non-contact condition.

  • PDF

DEVELOPMENT OF HIGH-ORDER ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR UNSTEADY FLOW SIMULATION (비정상 유동 해석을 위한 고차정확도 격자 적응 불연속 갤러킨 기법 개발)

  • Lee, H.D.;Choi, J.H.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.534-541
    • /
    • 2010
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin method has been developed for the numerical simulation of unsteady flows on unstructured meshes. A multi-level solution-adaptive mesh refinement/coarsening technique was adopted to enhance the resolution of numerical solutions efficiently by increasing mesh density in the high-gradient region. An acoustic wave scattering problem was investigated to assess the accuracy of the present discontinuous Galerkin solver, and a supersonic flow in a wind tunnel with a forward facing step was simulated by using the adaptive mesh refinement technique. It was shown that the present discontinuous Galerkin flow solver can capture unsteady flows including the propagation and scattering of the acoustic waves as well as the strong shock waves.

  • PDF

A Bit-level ACSU of High Speed Viterbi Decoder

  • Kim, Min-Woo;Cho, Jun-Dong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.240-245
    • /
    • 2006
  • Viterbi decoder is composed of BMU(Branch metric Unit), ACSU(Add Compare Select Unit), and SMU(Survivor path Memory Unit). For high speed viterbi decoders, ACSU is the main bottleneck due to the compare-select and feedback operation. Thus, many studies have been advanced to solve the problem. For example, M-step look ahead technique and Minimized method are typical high speed algorithms. In this paper, we designed a bit-level ACSU(K=3, R=1/2, 4bit soft decision) based on those algorithms and switched the matrix product order in the backward direction of Minimized method so as to apply Code-Optimized-Array in order to reduce the area complexity. For experimentation, we synthesized our design by using SYNOPSYS Design compiler, with TSMC 0.18 um library, and verified the timing by using CADENCE verilog-XL.

Development of 32-Channel Image Acquisition System for Thickness Measurement of Retina (망막 두께 측정을 위한 32채널 영상획득장치 개발)

  • 양근호;유병국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.110-113
    • /
    • 2003
  • In this paper, the multi-channel high speed data acquisition system is implemented. This high speed signal processing system for 3-D image display is applicable to the manipulation of a medical image processing, multimedia data and various fields of digital image processing. In order to convert the analog signal into digital one, A/D conversion circuit is designed. PCI interface method is designed and implemented, which is capable of transmission a large amount of data to computer. In order to, especially, channel extendibility of images acquisition, bus communication method is selected. By using this bus method, we can interface each module effectively. In this paper, 32-channel A/D conversion and PCI interface system for 3-dimensional and real-time display of the retina image is developed. The 32-channel image acquisition system and high speed data transmission system developed in this paper is applicable to not only medical image processing as 3-D representation of retina image but also various fields of industrial image processing in which the multi-point realtime image acquisition system is needed.

  • PDF

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

A method for linearizing nonlinear system by use of polynomial compensation

  • Nishiyama, Eiji;Harada, Hiroshi;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.597-600
    • /
    • 1997
  • In this paper, the authors propose a new method for linearizing a nonlinear dynamical system by use of polynomial compensation. In this method, an M-sequence is applied to the nonlinear system and the crosscorrelation function between the input and the output gives us every crosssections of Volterra kernels of the nonlinear system up to 3rd order. We construct a polynomial compensation function from comparison between lst order Volterra kernel and high order kernels. The polynomial compensation function is, in this case, of third order whose coefficients are variable depending on the amplitude of the input signal. Once we can get compensation function of nonlinear system, we can construct a linearization scheme of the nonlinear system. That is. the effect of second and third order Volterra kernels are subtracted from the output, thus we obtain a sort of linearized output. The authors applied this method to a saturation-type nonlinear system by simulation, and the results show good agreement with the theoretical considerations.

  • PDF