• Title/Summary/Keyword: High level waste

Search Result 630, Processing Time 0.027 seconds

The Status and Prospect of Decommissioning Technology Development at KAERI (한국원자력연구원의 해체기술 개발 현황 및 향후 전망)

  • Moon, Jeikwon;Kim, Seonbyung;Choi, Wangkyu;Choi, Byungseon;Chung, Dongyong;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.139-165
    • /
    • 2019
  • The current status and prospect of decommissioning technology development at KAERI are reviewed here. Specifically, this review focuses on four key technologies: decontamination, remote dismantling, decommissioning waste treatments, and site remediation. The decontamination technologies described are component decontamination and system decontamination. A cutting method and a remote handling method together with a decommissioning simulation are described as remote dismantling technologies. Although there are various types of radioactive waste generated by decommissioning activities, this review focuses on the major types of waste, such as metal waste, concrete waste, and soil waste together with certain special types, such as high-level and high-salt liquid waste, organic mixed waste, and uranium complex waste, which are known to be difficult to treat. Finally, in a site remediation technology review, a measurement and safety evaluation related to site reuse and a site remediation technique are described.

Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance

  • Yao, Jun;Kong, Qingna;Zhu, Huayue;Zhang, Zhen;Long, Yuyang;Shen, Dongsheng
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.503-508
    • /
    • 2015
  • The adsorption characteristics of ammonia on MSWI bottom ash were investigated. The effect of the variation of the landfill environmental parameters including pH, anions and organic matter on the adsorption process was discussed. Results showed that the adsorption could be well described by pseudo-second-order kinetics and Langmuir model, with a maximum adsorption capacity of 156.2 mg/g. The optimum adsorption of ammonia was observed when the pH was 6.0. High level of ion and organic matter could restrict the adsorption to a low level. The above results suggested that MSWI bottom ash could affect the migration of ammonia in the landfill, which is related to the variation of the landfill circumstance.

An Analysis of Constraints on Pyroprocessing Technology Development in ROK Under the US Nonproliferation Policy

  • Jae Soo Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.383-395
    • /
    • 2023
  • Since 1997, the Republic of Korea (ROK) has been developing pyro-processing (Pyro) technology to reduce the disposal burden of high-level radioactive waste by recycling spent nuclear fuel (SNF). Compared to plutonium and uranium extraction process, Korean Pyro technology has relatively excellent proliferation resistance that cannot separate pure plutonium owing to its intrinsic characteristics. Regarding Pyro technology development of ROK, the Bush administration considered that Pyro is not reprocessing under the Global Nuclear Energy Partnership, whereas the Obama administration considered that Pyro is subject to reprocessing. However, the Bush and Obama administrations did not allow ROK to conduct full Pyro activities using SNF, even though ROK had faithfully complied with international nonproliferation obligations. This is because the US nuclear nonproliferation policy to prevent the spread of sensitive technologies, such as enrichment and reprocessing, has a strong effect on ROK, unlike Japan, on a bilateral level beyond the NPT regime for non-proliferation of nuclear weapons.

One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste

  • Wu, Hao;Kim, Seong-Yun;Ito, Tatsuya;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3641-3649
    • /
    • 2022
  • A simple solvothermal reaction was used to prepare a 3-aminopropyl-functionalized silica-gel-based adsorbent for adsorbing Pd(II) from the nitric acid solution. Scanning electron microscopy, fourier transform infrared spectroscopy, and thermogravimetry analysis were performed on the as-synthesized adsorbent to demonstrate the successful introduction of Schiff base groups. Batch experiments were used to investigate the effects of contact time, nitric acid concentration, solution temperature, and adsorption capacity. It is worth noting that the prepared adsorbent exhibited a higher affinity toward Pd(II) with the uptake approximately 100% even in a 2 M HNO3 solution. At an equilibrium time of 5 h, the maximum adsorption capacity of Pd(II) was estimated to be 0.452 mmol/g. The adsorbed Pd(II) could be completely eluted by dissolving 0.2 M thiourea solution in 0.1 M HNO3. Using a combination of particle-induced X-ray emission analysis and an X-ray photoelectron spectrometer, the adsorbed Pd was found to be uniformly distributed on the surface of the prepared adsorbent and the existing species were Pd(II) and zero-valent Pd(0). Due to the desirable performances, facile preparation method, and abundant raw material source, the prepared adsorbent demonstrated a high application potential in the recovery of Pd(II) from simulated high-level liquid waste treatment.

A Long Term Effect Prediction of Radioactive Waste Repository Facility in Gyeongju (경주시에 대한 중저준위 방사성폐기물처분장 건설 프로그램의 장기적 효과)

  • Oh, Young-Min;Jung, Chang-Hoon
    • Korean System Dynamics Review
    • /
    • v.9 no.2
    • /
    • pp.105-128
    • /
    • 2008
  • City of Gyeongju's referendum finally offered the long-waited low-level radioactive waste disposal site in November 2005. Gyeongju's positive decision was due to the various economic rewards and incentives the national government promised to the city. 300 billion won for an accepting bonus, the location of the headquarter building of the Korean Hydro and Nuclear Power Co., and the accelerator research center and 3.25 trillion won for supporting regional development program implementation. All of the above will affect the city's infrastructure and the citizens' economic and social lives. Population, land use, economic structure, SOC and quality of life will be affected. Some will be very positive, and some will be negative. This research project will see the future of the city and forecast the demographic, economic, physical and environmental changes of the city via computer simulation's system dynamics technique. This kind of simulation will help City of Gyeongju's what to prepare for the future. The population forecasting of the year 2046 will be 662,424 with the waste disposal site, and 327,274 without the waste disposal site in Gyeongju. The waste disposal site and regional supporting program will increase 184,246 Jobs more with 1,605 agriculture and fishery, 5,369 manufacturing shops and 27,577 shops. The population increase will bring 96,726 more houses constructed in the city. Land use will also be affected. More land will be developed. And road, water plant and waste water plant will be expanded as much. The city's financial structure will be expanded, due to the increased revenues from the waste disposal site, and property tax revenues from the middle-class employees of the company, and the high-powered scientists and technologists from the accelerator research center. All in all, the future of the city will be brighter after operating the nuclear waste disposal site inside the city.

  • PDF

Application of Cokriging for the Estimation of Groundwater Level Distribution at the Nanjido Waste Landfill Area (난지도 매립지 일대의 지하수위 분포 추정을 위한 복합 크리깅의 응용)

  • 정상용;이강근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 1995
  • Cokriging was applied for the estimation of the water levels of the basal leachate and the surrounding groundwater at the Nanjido waste landfill area. When the groundwater level is estimated at the high relief area, it makes a good result to use the data of groundwater level and elevation simultaneously because groundwater level is correlated with topography. This study determined the best semivariogram model of 87 groundwater levels and 144 elevations through cross validation test, and produced the contour maps of groundwater levels using ordinary kriging and universal kiging. Two contour maps don't make big difference at the waste site because this area has a large number of groundwater level data. However, they show big difference at the upper left part of the study area because this area has high relief and a small number of sample data. Their difference is also found at the south area near the Han river. When the topography is considered for the both areas, the contour map of cokriging is thought to be closer to the real groundwater distribution than that of kriging.

  • PDF

Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository

  • Lee, Jae-Owan;Cho, Won-Jin;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.139-150
    • /
    • 1999
  • The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/$\textrm{cm}^2$ to 190.2 Kg/$\textrm{cm}^2$ under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled off to nearly constant value.

  • PDF

Korean Reference Disposal System for High-level Radioactive Wastes

  • Choi Heui-Joo;Choi Jongwon;Lee Jong Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.225-235
    • /
    • 2005
  • This paper outlined the status of the development of Korean Reference Disposal (KRS­1) system for high-level radioactive wastes. The repository concept was based on the engineering barrier system which KAERI has developed through a long-term research and development program. The design requirements were prepared for the conceptual design of the repository. The amount of PWR and CANDU spent fuels were projected with the current nuclear power plan. The disposal rates of PWR and CANDU spent fuels were analyzed. The reference geologic characteristics including classification of fracture zones were set for the KRS. The disposal concepts and the layout of the repository were described.

  • PDF

Study on the effective ventilation system in high-level waste disposal tunnel (고준위폐기물 처분터널 내 효율적인 환기시스템에 관한 고찰)

  • Yoon, Chan-Hoon;Choi, Young-Chul;Kim, Jin-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.363-364
    • /
    • 2014
  • 국내 에너지의 장기적인 수요상황을 볼 때 원자력 발전의 비중이 확대되는 것은 불가피 하므로 환경 친화적인 사용 후 핵연료의 관리 및 고준위 폐기물의 처분방안의 마련은 원자력의 개발만큼이나 중요하다. 이에 본 연구에서는 방사성 폐기물의 효율적인 관리와 저장 및 열제거를 위하여 최적 환기시스템을 적용한 처분장 설계를 목적으로 여러 환기시스템 설계안을 비교 분석하였다. 분석결과, 8가지 중 case 4(병렬회로)와 case 6(혼합 Diagonal 회로)의 환기효율이 우수한 결과를 나타냈으며, 이와 같은 연구를 통해 환경 친화적인 처분장의 건설이 가능할 것이다.

  • PDF

Analysis of Functional Criteria for Buffer Material in a High-level Radioactive Waste Repository

  • W. J. Cho;Lee, J. O.;K. S. Chun;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.116-132
    • /
    • 1999
  • This study is intended to analyze the requirements of a buffer material that is one of the major components of the engineered barriers in a high-level radioactive waste repository. The characteristics of potential materials for the buffer in the repository were analyzed and a candidate material was selected. And, based on the current knowledge and the information from various sources, the requirements of a buffer material were evaluated. Finally its quantitative functional criteria on the generic viewpoint has been recommended to be supplied as a guideline for the development of the reference disposal concept and the related buffer material in Korea. The criteria are composed of seven major items, such as hydraulic conductivity, retardation capacity, swelling potential and swelling pressure, thermal conductivity, longevity, organic matter content, and mechanical properties.

  • PDF