• Title/Summary/Keyword: High kVp Technique

Search Result 24, Processing Time 0.02 seconds

A Study on Reducing of Entrance Surface Dose with the Eye in the Computed Radiography by Using High Kilo Voltage Peak Technique (컴퓨터 방사선영상에서 고 관전압 기법을 이용한 안구 입사표면선량 감소에 관한 연구)

  • Seoung, Youl-Hun;Rhim, Jea-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • The purpose of this study was to minimize of entrance surface dose (ESD) at the eye using high kVp technique in the computed radiography. We used REX-650R (Listem, Korea) general X-ray unit, and external detector with ESD dosimeter of Piranha 657 (RTI Electronics, Sweden). We used head of the whole body phantom. The total 64 images of X-ray anterior-posterior of skull were acquired using the film/screen (F/S) method and the digital of computed radiography method. The three radiology professor of more 10 years of clinical career evaluated a X-rays images in the same space by 5-point scale. The external detector was performed measurement of ESD of three times by same condition on the eye of the head phantom. The good image quality in the F/S method (90 kVp, 2.5 mAs) showed at the minimized ESD of 0.310 ${\pm}$ 0.001 mGy. the good image quality in the computed radiography method (90 kVp, 2.0 mAs) showed at the minimized ESD of 0.180 ${\pm}$ 0.002 mGy (P = 0.002). Finally the radiation dose could reduced about 50% in the computed radiography method more than the F/S method. In addition the eye entrance surface dose using high kVp technique with the computed radiography was reduced 92% more than conventional technique (F/S method).

A Study on the Image Quality and Patient Dose in Erect Simple Abdomen Radiography (복부 선자세 단순촬영시 화질과 피폭선량에 관한 연구)

  • Kim, Jung-Min;Hayashi, Taro;Ishida, Yuji;Sakurai, Tatsuya
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • The purpose of simple abdomen erect projection is to see the fluid level which indicates gastrointestinal ileus or free air due to perforation. we do not have to insist on low kVp technique in simple abdomen erect position as long as we can detect the fluid level and free air shadow. Therefore, the author tried to decrease patient dose by high kVp technique and to improve the image quality due to motion artifact by reduction of exposure time. [Methods] Experiment 1. * screen/film SRO1000/HRH * exposure factor : $140\;kvp{\pm}5\;kv$ with added filters, 200 mA, 0.01 sec * phantom : Acryles : 15.0 cm(equivalent to 17 cm body thickness) 17.5 cm(equivalent to 21 cm body thickness) 20.0 cm (equivalent to 25 cm body thickness) With the exposure factor for same film density($D=0.8{\pm}0.1$) and with the materials above, we tried to find out entrance skin dose and gonad dose for both male and female. Experiment 2. Burger's phantom radiography were checked to see whether there was any change of image quality according to the kVp and the added filters. Experiment 3. Using rotating meter(self made), we examined the motion artifact and the exposure time limitation. [Results and conculution] 1. Using high voltage technique of 140 kVp with added filter, Skin dose, testicle dose and ovary dose decrease to 89.3%, 47% and 71.4% respectively compare to 70 kVp technique, 2. No great changes of Burger's phantom image has detected as from 70 kVp to 140 kVp and the air hole size of Burger's phantom over 0.028 cc(Diameter 3 mm, hight 4 mm) can be distinghished. 3. 0.01 sec(1 pulse) exposure time is possible in the single phase full wave rectification that why we can quitely reduce the unsharness caused by patient's movement.

  • PDF

An Assessment of the Radiation Dose from Radiography with the Change in Air Gap (공극(기극(氣隙)) 변화에 따른 방사선촬영 선량평가)

  • Ahn, Byeong Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.381-385
    • /
    • 2016
  • This study aims to propose a method for reducing radiation dose in high-voltage radiography using air gap technique while maintaining the same image quality as when using grids. For an experiment, air gaps were set at 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm with a focus-receptor distance of 180 cm; with each air gap distance, tube current was set at 15 mAs, and tube voltage was set at 80 kVp, 85 kVp, 90 kVp, 95 kVp and 100 kVp. Then, radiographs were taken. In a situation of employing a conventional method of using grids, radiographs were taken at 15 mAs and 107 kVp with a focus-receptor distance of 180 cm. According to the results of the experiment, the surface radiation dose from radiography using grids was 0.130 R; the surface radiation dose at a 20cm air gap was 0.124 R; PSNR between these two images was 10.65 [dB]. In conclusion, the air gap distance, which could maintain the image quality similar to that of a case where scattered radiation was removed and grids were used with a small surface radiation dose, was 20 cm. The result of this study is thought to be used as an indicator to remove surface radiation dose in radiography using air gap.

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Evaluation of ROC Curve in High Kilovoltage Technique Using Simulated Nodules on Chest (고관전압 흉부촬영의 가상결절을 이용한 ROC평가)

  • Ahn, Jin-Shin;Chang, Myung-Mi;Chung, Kyung-Mo;Cheung, Hwan;Lim, Jung-Ki;Kim, Jong-Hyo
    • Journal of radiological science and technology
    • /
    • v.15 no.2
    • /
    • pp.25-30
    • /
    • 1992
  • With transmitted dose through chest which has the problem of wide variations in absorption, simple film/screen combination method makes it diffucult to image lung field, mediastinum and retrocardiac areas. In order to overcome this, it is very common to use the high kilovoltage technique in diminishing the differences between high and low contrast. We have been adopting this method at department of diagnostic radiology, Seoul National University Hospital. To compare the image of it with that of low kilovoltage technique, we did radiographic tests using beans on the skin. We marked off into three anatomical categories such as lungs, mediastinum and near diaphragm, then attached a bean on a marked area at random. In order to compare with high and low, we took a radiography of high($120{\sim}140\;kVp$) and low($70{\sim}90\;kVp$) kilovoltage tehchniques, respectively at the same time. We have done experiments 320 cases. We evaluated the results of test in response to sensitivity(true positive) and specificity(true negative). In evaluating, we gave them points from 1 to 5 according to true or false. With given points by a radiologist having much experiences, we could acquire the percentage of sensitivity and specificity. The percentage made us to get the schematic table of ROC curve of those two methods. Consequently, high kilovoltage technique appeared 18% better than low kilovoltage technique for detecting beans with our apparatus.

  • PDF

Image Quality Analysis when applying DLIR Reconstruction Techniques in NECT CT (NECT CT에서 DLIR 재구성기법 적용 시 화질분석)

  • Yoon, Joon;Kim, Hyeon-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 2022
  • 120 kVp FBP reconstruction image standard by using raw data after scanning by changing tube voltage among the NECK CT protocols that are broad applied in clinical practice using a human phantom including thyroid gland The usefulness of the DLIR reconstruction technique was investigated. As a result, CTDIvol decreased when the DLIR reconstruction technique was applied, and in particular, the image quality obtained under the same standard scanning conditions at a lower dose for ASIR-V and DLIR reconstruction was reached than when FBP was applied at the same kVp In addition, as a result of SNR and CNR analysis, the DLIR reconstructed image was analyzed with high SNR and CNR values, and SSIM analysis, the SSIM index of the 100 kVp, DLIR reconstructed image was measured to be close to 1, and it was analyzed that the similarity of the reconstructed image to the original image was high (p>0.05). If the results of this study are used to supplement clinical image evaluation and further develop an algorithm applicable to various anatomical structures, it is thought that it will be useful for clinical application as it is possible to maintain the image quality while lowering the examination dose.

Radiation dose Assesment according to the Adaptive Statistical Iterative Reconstruction Technique of Cardiac Computed Tomography(CT) (심장 CT 검사시 ASIR 적용에 따른 선량 평가)

  • Jang, Hyun-Cheol;Kim, Hyun-Ju;Cho, Jae-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.252-259
    • /
    • 2011
  • To identify the effects of the application of the adaptive statistical iterative reconstruction (ASIR) technique in combination with the other two factors of body mass Index (BMI) and tube potential on radiation dose in cardiac CT. The patient receiving operation the cardiac CT examination was divided four groups into according to kVp.[A group(n=20), Non-ASIR, BMI < 25, 100 kVp; B group(n=20), Non-ASIR, BMI > 25, 120 kVp; C group(n=20), 40% ASIR BMI < 25, 100 kVp; D group(n=20), 40% ASIR, BMI > 25, 120 kVp] After setting up the region of interest in the main artery central part and right coronary artery and left anterior descending artery, the CT number was measured and an average and standard deviation were analyzed. There were A group and the difference which the image noise notes statistically between C. And A group was high so that the noise could note than C group (group A, 494 ${\pm}$ 32 HU; group C, 482 ${\pm}$ 48 HU: P<0.05) In addition, there were B group and the difference noted statistically between D. And B group was high so that the noise could note than D group (group B, 510 ${\pm}$ 45 HU; group D, 480 ${\pm}$ 82 HU: P<0.05). In the qualitative analysis of an image, there was no difference (p>0.05) which a group, B group, C group, and D as to average, A group 4.13${\pm}$0.2, B group 4.18${\pm}$0.1, and C group 4.1${\pm}$0.2 and D group note statistically altogether with 4.15${\pm}$0.1 as a result of making the clinical evaluation according to the coronary artery segments. And the inappropriate image was shown to the diagnosis in all groups. As to the radiation dose, a group 8.6${\pm}$0.9 and B group 14.9${\pm}$0.4 and C group 5.8${\pm}$0.5 and D group are 10.1${\pm}$0.6 mSv.

Assessment of Image Quality of Dual Energy 256 MDCT Technique Focused on keV Changes for MCA Stroke in Cerebral Angiography : Single Energy CT Standard Reference Mode (뇌혈관 조영 검사 시 중대뇌동맥 뇌졸중에 대한 keV 변화를 중심으로 이중 에너지 256 MDCT 기법의 영상의 질 평가 : 단일에너지 CT 표준방식)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.961-968
    • /
    • 2019
  • The purpose of this study was to evaluate the usefulness of cerebral angiography in each energy level by using dual energy technique in CT. Methods were performed on 15 DE images and SE images of CT angiography. For the analysis of images, mean value, standard deviation, SNR and CNR value were determined by setting ROI on MCA, brain parenchyma tissue, and back ground. As a result of concurrent visual evaluation with Likert 5 point scale, the clearest MCA image was confirmed at DE 40 keV and SE 120 kVp(p>0.05). The SNR value of the SE image was measured to be similar to the 40 keV energy level of the DE image. The low energy level image of 40 keV and 50 keV was measured with a high SNR and the contrast ratio was higher than that of the high energy image.

Design of Parallel Decimal Floating-Point Arithmetic Unit for High-speed Operations (고속 연산을 위한 병렬 구조의 십진 부동소수점 연산 장치 설계)

  • Yun, Hyoung-Kie;Moon, Dai-Tchul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2921-2926
    • /
    • 2013
  • In this paper, a decimal floating-point arithmetic unit(DFP) was proposed and redesigned to support high speed arithmetic operation employed parallel processing technique. The basic architecture of the proposed DFP was based on the L.K.Wang's DFP and improved it enabling high speed operation by parallel processing for two operands with same size of exponent. The proposed DFP was synthesized as a target device of xc2vp30-7ff896 using Xilinx ISE and verified by simulation using Flowrian tool of System Centroid co. Compared to L.K.Wang's DFP and reference [6]'s method, the proposed DFP improved data processing speed about 8.4% and 3% respectively in case of same input data.

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.