DOI QR코드

DOI QR Code

Radiation dose Assesment according to the Adaptive Statistical Iterative Reconstruction Technique of Cardiac Computed Tomography(CT)

심장 CT 검사시 ASIR 적용에 따른 선량 평가

  • 장현철 (순천향대학교 부천병원 영상의학과) ;
  • 김현주 (순천향대학교 부천병원 영상의학과) ;
  • 조재환 (경산1대학 방사선과)
  • Received : 2011.01.03
  • Accepted : 2011.03.29
  • Published : 2011.05.28

Abstract

To identify the effects of the application of the adaptive statistical iterative reconstruction (ASIR) technique in combination with the other two factors of body mass Index (BMI) and tube potential on radiation dose in cardiac CT. The patient receiving operation the cardiac CT examination was divided four groups into according to kVp.[A group(n=20), Non-ASIR, BMI < 25, 100 kVp; B group(n=20), Non-ASIR, BMI > 25, 120 kVp; C group(n=20), 40% ASIR BMI < 25, 100 kVp; D group(n=20), 40% ASIR, BMI > 25, 120 kVp] After setting up the region of interest in the main artery central part and right coronary artery and left anterior descending artery, the CT number was measured and an average and standard deviation were analyzed. There were A group and the difference which the image noise notes statistically between C. And A group was high so that the noise could note than C group (group A, 494 ${\pm}$ 32 HU; group C, 482 ${\pm}$ 48 HU: P<0.05) In addition, there were B group and the difference noted statistically between D. And B group was high so that the noise could note than D group (group B, 510 ${\pm}$ 45 HU; group D, 480 ${\pm}$ 82 HU: P<0.05). In the qualitative analysis of an image, there was no difference (p>0.05) which a group, B group, C group, and D as to average, A group 4.13${\pm}$0.2, B group 4.18${\pm}$0.1, and C group 4.1${\pm}$0.2 and D group note statistically altogether with 4.15${\pm}$0.1 as a result of making the clinical evaluation according to the coronary artery segments. And the inappropriate image was shown to the diagnosis in all groups. As to the radiation dose, a group 8.6${\pm}$0.9 and B group 14.9${\pm}$0.4 and C group 5.8${\pm}$0.5 and D group are 10.1${\pm}$0.6 mSv.

심장 CT 검사시 적응식 통계적 반복 재구성법을 이용하여 체질량 지수에 따른 관전압 변화에 대한 방사선 피폭선량에 대하여 알아보고자 하였다. 심장 CT 검사를 시행 받은 환자를 BMI에 따른 관전압에 따라 네 개의 군으로 나누어[A군(n=20), Non-ASIR, BMI < 25, 100 kVp; B군(n=20), Non-ASIR, BMI > 25, 120 kVp; C군(n=20), 40% ASIR BMI < 25, 100 kVp; D군(n=20), 40% ASIR, BMI > 25, 120 kVp] 대동맥 중심부와 우관상동맥, 좌전하행동맥에 관심영역을 설정 한 후 CT값(number)측정하여 평균값과 표준편차를 분석하였다. 영상 잡음은 A군과 C군 사이에는 통계적으로 유의한 차이가 있었으며, A군이 C군보다 노이즈가 유의하게 높았다(group A, 494 ${\pm}$ 32 HU; group C, 482 ${\pm}$ 48 HU: P<0.05). 또한, B군과 D군 사이에는 통계적으로 유의한 차이가 있었으며, B군이 D군보다 노이즈가 유의하게 높았다(group B, 510 ${\pm}$ 45 HU; group D, 480 ${\pm}$ 82 HU: P<0.05). 영상의 정성적 분석에서 관상동맥 분절별로 임상평가 한 결과 평균값은 A군은 4.13${\pm}$0.2, B군은4.18${\pm}$0.1, C군은 4.1${\pm}$0.2, D군은 4.15${\pm}$0.1로 A군, B군, C군, D군 모두 통계적으로 유의한 차이가 없었으며(P>0.05), 모든 군에서 진단에 적절한 영상을 보였다. 피폭선량은 A군은 8.6${\pm}$0.9, B군은 14.9${\pm}$0.4, C군은 5.8${\pm}$0.5, D군은 10.1${\pm}$0.6 mSv 로 나타났다.

Keywords

References

  1. R. E. Bunge and C. Herman, "Usage of diagnostic procedures: a nationwide hospital study," Radiology. Vol.163, No.2, pp.569-657, 1987. https://doi.org/10.1148/radiology.163.2.3550886
  2. F. A. Mettler, J. A. Briggs, and R. Carchman, "Use of radiology in U.S general short-term hospital:1980-1990," Radiology. Vol.189, No.3, pp.377-380, 1993. https://doi.org/10.1148/radiology.189.2.8210363
  3. J. David and Brenner, Eric J. "Computed Tomography-An Increasing Source of Radiation Exposure," N Engl J Med. Vol.357, No.1, pp.2277-2284, 2007. https://doi.org/10.1056/NEJMra072149
  4. Fuminari Tatsugami, Lars Husmann, and Bernhard A. herzog, "Evaluation of a Body Mass Index-Adapted Protocol for Low-Dose 64-MDCT Coronary Angiography with Prospective ECG Triggering," AM J Roentgenol. Vol.192, No.2, pp.635-638, 2009. https://doi.org/10.2214/AJR.08.1390
  5. 김윤경, 김유경, "체질량 지수 및 관전압 변화에 따른 CT 관상동맥 조영술의 영상의 질 및 방사선 피폭량 비교", 대한영상의학회지, 제62권, 제1호, pp.29-35, 2010.
  6. A. K. Hara, R. G. Paden, and A. C. Silva, "Iterative reconstruction technique for reducing body radiation dose at CT, feasibility study," AJR, Vol193, No.2, pp.764-771, 2009. https://doi.org/10.2214/AJR.09.2397
  7. J Anthony Seibert, Gray T barnes, and Robert G Gould, "Specification, Acceptance testing and quality control of diagnostic X-ray imaging equipment," Medical physics monograph. Vol.20, No.1, pp.899-936, 1991.
  8. A. B. Smith, W. P. Dillon, and B. C. Lau, "Radiation dose reduction strategy for CT protocols, successful implementation in neuroradiology section," Radiology. Vol.247, No.3, pp.499-506, 2008. https://doi.org/10.1148/radiol.2472071054
  9. K. T. Bae, B. A. Seeck, and C. F. Hildebolt, "Contrast enhancement in cardiovascular MDCT, effect of body weight, height, body surface area, body mass index, and obesity," Am J Roentgenol Vol.190, No.4, pp.777-784, 2008. https://doi.org/10.2214/AJR.07.2765
  10. S. Leschka, P. Stolzmann, and F. T. Schmid, "Low kilovoltage cardiac dual-source CT, attenuation, noise, and radiation dose," Eur Radiol. Vol.18, No.4, pp.1809-1817, 2008. https://doi.org/10.1007/s00330-008-0966-1
  11. Z. Szucs-Farkas, L. Kurmann, and T. Strautz, "Patient exposure and image quality of low-dose pulmonary computed tomography angiography, comparison of 100 kVp and 80 kVp protocols," Invest Radiol. Vol.43, No.4, pp.871-876, 2008. https://doi.org/10.1097/RLI.0b013e3181875e86
  12. K. Sauer and C. bouman, "A local update strategy for iterative reconstruction from projections," IEEE Trans, on Signal Processing 41, 1993(2). https://doi.org/10.1109/78.193196
  13. Alvin C. Silva, Holly J. Lawder, and Amy Hara, "Innovation in CT Dose Reduction Strategy, Application of the Adaptive Statistical Iterative Reconstruction Algorithm," AJR. Vol.194, No.1, pp.191-199, 2010. https://doi.org/10.2214/AJR.09.2953