• Title/Summary/Keyword: High impedance

Search Result 1,681, Processing Time 0.028 seconds

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

The Comparison and Analysis about Earth System based on IEC60364 (IEC 60364 기반 접지계통 비교 분석)

  • Jung, Jin-Soo;Han, Woon-Ki;Kim, Oh-Hwan;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.56-62
    • /
    • 2010
  • This paper describes the analysis of loop impedance characteristics by impedance alteration of protective conductors and operating characteristics of electric leakage circuit breaker by each earth systems(TT system, TN-S system and TN-C system) in IEC 60364. As a result, loop Impedance was affected by resistance & inductance. The current& voltage characteristics about earth system were identified that the TN-S system was high fault current & low touch voltage. TN-C system was almost same the TN-S system but TT system was low fault current & high touch voltage.

Implementation of Wireless ECG Measurement System Attaching in Chair for Ubiquitous Health Care Environment (유비쿼터스 헬스 케어 적용을 위한 의자 부착형 무선 심전도 측정 시스템 구현)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Jee-Chul;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.776-781
    • /
    • 2008
  • In this study, ubiquitous health care system attaching in chair to monitor ECG for health care was developed at the unconsciousness state. The system conveniently and simple measured ECG at non-consciousness. We measured the contact impedance to skin-electrode of metal mesh electrodes of the system. Contact impedance enable the electrode to use for ECG measurement. The results are that the impedance of the metal mesh electrodes according to sizes is low when the size is 4$cm^2$. As the result, when the size of the metal mesh electrode is 4$cm^2$, the electrode is fit for ECG measurement. We can acquired by positing the arm on the metal mesh electrode. The ECG signal was detected using a high-input-impedance bio-amplifier, and then passed filter circuitry. The measured signal transmitted to a PC through the bluetooth wireless communication and monitored. Data of the non-constrained ECG system attaching in chair is noise-data when comparing metal mesh electrode with the Ag/Agcl electrode but the data is significant to monitor ECG for check the body state.

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.

Single Phase Inverter High Frequency Circuit Modeling and Verification for Differential Mode Noise Analysis (차동 노이즈 분석을 위한 단상 인버터 고주파 회로 모델링 및 검증)

  • Shin, Ju-Hyun;Seng, Chhaya;Kim, Woo-Jung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • This research proposes a high-frequency circuit that can accurately predict the differential mode noise of single-phase inverters at the circuit design stage. Proposed single-phase inverter high frequency circuit in the work is a form in which harmonic impedance components are added to the basic single-phase inverter circuit configuration. For accurate noise prediction, parasitic components present in each part of the differential noise path were extracted. Impedance was extracted using a network analyzer and Q3D in the measurement range of 150 kHz to 30 MHz. A high-frequency circuit model was completed by applying the measured values. Simulations and experiments were conducted to confirm the validity of the high-frequency circuit. As a result, we were able to predict the resonance point of the differential mode voltage extracted as an experimental value with a high-frequency circuit model within an approximately 10% error. Through this outcome, we could verify that differential mode noise can be accurately predicted using the proposed model of the high-frequency circuit without a separate test bench for noise measurement.

Development of PC-based and portable high speed impedance analyzer for biosensor (바이오센서를 위한 PC 기반의 휴대용 고속 임피던스 분석기 개발)

  • Kim, Gi-Ryon;Kim, Gwang-Nyeon;Heo, Seung-Deok;Lee, Seung-Hoon;Choi, Byeong-Cheol;Kim, Cheol-Han;Jeon, Gye-Rok;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.33-41
    • /
    • 2005
  • For more convenient electrode-electrolyte interface impedance analysis in biosensor, a stand-alone impedance measurement system is required. In our study, we developed a PC-based portable system to analyze impedance of the electrochemical cell using microprocessor. The devised system consists of signal generator, programmable amplifiers, A/D converter, low pass filter, potentiostat, I/V converter, microprocessor, and PC interface. As a microprocessor, PIC16F877 which has the processing speed of 5 MIPS was used. For data acquisition, the sampling rate at 40 k samples/sec, resolution of 12 bit is used. RS-232 with 115.2 kbps speed is used for the PC communication. The square wave was used as stimuli signal for impedance analysis and voltage-controlled current measurement method of three-electrode-method were adopted. Acquired voltage and current data are calculated to multifrequency impedance signal after Fourier transform. To evaluate the implemented system, we set up the dummy cell as equivalent circuit of which was composed of resistor, parallel circuit of capacitor and resistor connected in parallel and measured the impedance of the dummy cell; the result showed that there exist accuracy within 5 % errors and reproduction within 1 % errors compared to output of Hioki LCR tester and HP impedance analyzer as a standard product. These results imply that it is possible to analyze electrode-electrolyte interface impedance quantitatively in biosensor and to implement the more portable high speed impedance analysis system compared to existing systems.

An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents (접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석)

  • Choi, Jong-Hyuk;Cho, Yong-Sung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

A Design Database for High Speed IC Package Interconnection (고속 집적회로 패키지 인터커넥션을 위한 설계 데이타베이스)

  • ;;;F. Szidarovszki;O.A.Palusinski
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.184-197
    • /
    • 1995
  • In this paper, high speed IC package-to-package interconnections are modeled as lossless multiconductor transmission lines operating in the TEM mode. And, three mathematical algorithms for computing electrical parameters of the lossless multiconductor transmission lines are described. A semi-analytic Green's function method is used in computing per unit length capacitance and inductance matrices, a matrix square root algorithm based on the QR algorithm is used in computing a characteristic impedance matrix, and a matrix algorithm based on the theory of M-matrix is used in computing a diagonally matched load impedance matrix. These algorithms are implemented in a computer program DIME (DIagonally Matched Load Impedance Extractor) which computes electrical parameters of the lossless multiconductor transmission lines. Also, to illustrate the concept of design database for high speed IC package-to-package interconnection, a database for the multi conductor strip transmission lines system is constructed. This database is constructed with a sufficiently small number of nodes using the multi-dimensional cubic spline interpolation algorithm. The maximum interpolation error for diagonally matched load impedance matrix extraction from the database is 1.3 %.

  • PDF

A Study on the Signal Integrity and Distorted Signal Analysis of High Speed Transmission Line (고속 전송선로의 신호왜곡과 신호 보전에 관한 연구)

  • Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.213-219
    • /
    • 2012
  • In this paper, we suggested the method of signal integrity for noises and distortion signal generated between high speed information transmission modules by external effects. Suggested method for signal integrity of impedance matching to remove transmission line distortion, We divided the impedance matching between the transmitter and the receiver module with the single line and differential line methods after confirmed the improvement of signal distortions through ADS simulation. the experimental results indicated that it is possible to keep signal integrity without signal distortions by matching the optimal termination impedance which are considering the signal delay of transmission line for using the high-performance modules.