• 제목/요약/키워드: High frequency injection

검색결과 229건 처리시간 0.027초

영구자석 동기 전동기의 고조파 주입 센서리스 기법 시뮬레이션 모델 (Simulation Model of Harmonics Injection Sensorless Technique for Permanent Magnet Synchronous Motor)

  • 윤진우;이동명
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.67-71
    • /
    • 2020
  • 본 연구에서와 같이 전동기의 저속 영역 운전의 센서리스 기법으로 적합한 고조파 주입 센서리스 제어기법의 시뮬링크 시뮬레이션 모델을 제안한다. 본 모델에 적용되는 전동기는 영구자석 전동기이다. 또한, 다양한 고조파 주입 기법중 1kHz 구형파를 주입하는 기법을 사용한다. 고조파 주입에 따른 전동기의 전동기 상수의 변화는 시뮬링크에서 제공하는 전동기의 상수조정을 통해 구현한다. 시뮬링크의 함수와 라이브러리에서 제공하는 모델을 통해 센서리스 기법을 구현한다. 전류에 포함된 고조파 성분을 필터를 이용하여 추출하고, 추출된 파형을 이용하여 영구자석 전동기의 각도를 검출함을 보인다. 그리하여 1kW 영구자석 전동기에 적용된 시뮬레이션 파형에서의 전동기 각도 추정파형과 전동기 제어관련 파형을 통해 시뮬레이션 모델의 타당성을 보인다.

기본간호학 주사실습에서 발생한 찔림사고 현황, 교수의 스트레스 및 사전동의서의 필요성 (Nursing Students' Exposure to NeedleStick and Sharp Injuries, Faculty's Stress and Necessity of Informed Consent in Fundamental Nursing Practice)

  • 정승교;최민정;박진희;김현주;송경애
    • 기본간호학회지
    • /
    • 제24권4호
    • /
    • pp.277-285
    • /
    • 2017
  • Purpose: The purpose of this study was to identify occurrence of needle stick and sharp injuries(NSI) among students, level of faculty stress, and necessity of informed consent when students practice injection skills in fundamentals of nursing practice (FNP). Methods: Data were collected using self-reporting questionnaires and 74 faculty members who teach FNP responded it. Questionnaires included general characteristics, experiences of NSI, stress level, and informed consent. Data were analyzed using frequency, percent and paired t-test. Results: Of 74 faculty members, 51.4% experienced NSI 3~4 times or more during their FNP classes. Major procedures causing NSI during FNP were 'breaking the neck of ampules', 'disposing of used items', and 'inserting needles'. The stress level of faculty was higher and more than doubled when training with human beings compared to manikins. Most faculties (86.5%) agreed to the necessity of informed consent so that the safety of faculty and students could be protected and to provide enough information even though only 10.8% of faculty in this study got informed consent. Conclusion: Because there is high risk in every procedure of NSI, faculty has a high level of stress during injection practice in FNS. Therefore, it is necessary to develop a standard NSI precaution program for junior nursing students and discuss informed consent.

고양이 연수 복외측부 세포의 동맥혈압 조절에 관한 연구 (Role of the ventrolateral medulla of the cat in vasomotor regulation)

  • 박국양;구용숙;김종환
    • Journal of Chest Surgery
    • /
    • 제23권5호
    • /
    • pp.833-843
    • /
    • 1990
  • Vasomotor areas were identified by stimulating various sites of the medulla electrically in adult cats anesthetized with a-chloralose and their correlation with somatosympathetic pressor or depressor responses was investigated. Followings are the results obtained: 1. Pressor areas were found in the rostral ventrolateral, the caudal ventrolateral and the rostral dorsolateral medulla. 2. Separate depressor areas were found dorsal and ventral to the rostral ventrolateral pressor area. 3. Some areas showed biphasic responses: depressor responses to low frequency[1 \ulcorner2 Hz] and pressor responses to high frequency[20 \ulcorner100 Hz] stimulation 4. Lesions on the rostral ventrolateral pressor areas abolished the somatosympathetic pressor responses to the stimulation of peripheral afferent nerves, while the depressor responses remained. Lesions on the caudal ventrolateral pressor area affected neither the pressor nor depressor responses to the peripheral nerve stimulation. 5. Lesions on the depressor areas resulted in decreased depressor responses to the peripheral nerve stimulation, but to a lesser degree than that resulted from lesions on the pressor areas. 6. A microinjection of glutamate solution to the pressor area resulted in a prolonged pressor response, while glutamate injection to the depressor areas did not elicit depressor responses. From the above results, it is concluded that there are separate pressor and depressor areas in the rostral medulla of cats and each area plays a role in somatosympathetic pressor and depressor responses, respectively.

  • PDF

Detection of Magnetic Nanoparticles in Tissue Using Magneto-Motive DP-OCT

  • Oh, Jung-Hwan;Lee, Ho;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • 제11권1호
    • /
    • pp.26-33
    • /
    • 2007
  • We demonstrate the capability of differential-phase optical coherence tomography (DP-OCT) to detect superparamagnetic iron oxide (SPIO) nanoparticles taken up by liver parenchymeal macrophages (Kupffer cells). We apply an external time-varying high-intensity focused magnetic field. Our experiments demonstrate a novel diagnostic modality to detect macrophages that have taken up SPIO nanoparticles. Magnetic force acting on the nanoparticles was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially increased and focused the magnetic field strength ($B_{max}$ = 2 Tesla). $ApoE^{-/-}$ mice were sacrificed 2 days post intravenous injections of different SPIO doses (1.0, and 0.1 mmol Fe/kg body weight). Livers of $ApoE^{-/-}$ mice with and without injection of SPIO nanoparticles were investigated using DP-OCT, which detects tissue movement with nanometer resolution. Frequency response of iron-laden liver movement was twice the stimulus frequency. Movement was not observed in livers of control mice. Results of our experiments indicate DP-OCT is a candidate methodology to detect tissue based macrophages containing SPIO nanoparticles excited by an external focused magnetic field.

스위칭 주파수 신호 주입 IPMSM 센서리스 제어를 위한 회전 행렬 기반의 새로운 위치 오차 추정 기법 (A Novel Rotor Position Error Calculation Method using a Rotation Matrix for a Switching Frequency Signal Injected Sensorless Control in IPMSM)

  • 김상일;김래영
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.402-409
    • /
    • 2015
  • This paper proposes a novel rotor position error calculation method for high-frequency signal-injected sensorless control. The rotor position error using the conventional modulation method can be only measured up to ${\pm}45^{\circ}$. In addition, when the rotor position estimation error is not sufficiently small, the small angle approximation in no longer valid. To overcome these problems, this study introduces a new rotor position error calculation method using the rotating matrix. In this study, the position error measurement range of the proposed method is extended from ${\pm}45^{\circ}$ to ${\pm}90^{\circ}$. The linearity between the real rotor position error and the estimated error is maintained by nearly $90^{\circ}$. These features of the proposed method improve the performance of the sensorless control. The validity of the proposed method is verified by simulations and experiments.

Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm

  • Chen, ZY;Meng, Yahui;Wang, Ruei-Yuan;Peng, Sheng-Hsiang;Yang, Yaoke;Chen, Timothy
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.591-598
    • /
    • 2022
  • The article deals with the possibilities of vibration stimulation. Based on the stability analysis, a multi-scale approach with a modified whole-building model is implemented. The motion equation is configured for a controlled bridge with a MDOF (multiple dynamic degrees of freedom) Tuned Mass Damper (M-TMD) system, and a combination of welding, excitation, and control effects is used with its advanced packages and commercial software submodel. Because the design of high-performance and efficient structural systems has been of interest to practical engineers, systematic methods of structural and functional synthesis of control systems must be used in many applications. The smart method can be stabilized by properly controlling the high frequency injection limits. The simulation results illustrate that the multiple modeling method used is consistent with the accuracy and high computational efficiency. The M-TMD system, even with moderate reductions in critical pressure, can significantly suppress overall feedback on an unregulated design.

Discharge Characteristics of Large-Area High-Power RF Ion Source for Neutral Beam Injector on Fusion Devices

  • Chang, Doo-Hee;Park, Min;Jeong, Seung Ho;Kim, Tae-Seong;Lee, Kwang Won;In, Sang Ryul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.241.1-241.1
    • /
    • 2014
  • The large-area high-power radio-frequency (RF) driven ion sources based on the negative hydrogen (deuterium) ion beam extraction are the major components of neutral beam injection (NBI) systems in future large-scale fusion devices such as an ITER and DEMO. Positive hydrogen (deuterium) RF ion sources were the major components of the second NBI system on ASDEX-U tokamak. A test large-area high-power RF ion source (LAHP-RaFIS) has been developed for steady-state operation at the Korea Atomic Energy Research Institute (KAERI) to extract the positive ions, which can be used for the NBI heating and current drive systems in the present fusion devices, and to extract the negative ions for negative ion-based plasma heating and for future fusion devices such as a Fusion Neutron Source and Korea-DEMO. The test RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of RF discharge. The characteristics and uniformities of the plasma parameter in the RF ion source were measured at the lowest area of the expansion bucket using two RF-compensated electrostatic probes along the direction of the short- and long-dimensions of the expansion region. The plasma parameters in the expansion region were characterized by the variation of loaded RF power (voltage) and filling gas pressure.

  • PDF

산화네오디뮴(Nd2O3) 기도투여에 따른 흡입독성 (Pulmonary Toxicity in Rats by Intratracheal Instillation with the Rare-Earth Metal Neodymium Oxide)

  • 김종규;강민구;김수진;송세욱
    • 한국산업보건학회지
    • /
    • 제24권3호
    • /
    • pp.321-329
    • /
    • 2014
  • Objectives: This study was performed to produce data on the pulmonary toxicity of neodymium oxide($Nd_2O_3$) by intratracheal instillation. Methods: Two groups of rats were exposed to neodymium oxide by intratracheal instillation with doses of 0.5 mg and 2.0 mg, respectively. At two days, four weeks and 12 weeks after exposure, body weight change, organ weight change and histopathological change were observed. At 12 weeks after exposure, lung function change was measured. Results: The body weight of rats in the high concentration group decreased after 12 weeks by 4-5% compared with the control group. At four weeks and 12 weeks after the administration of neodymium oxide, the absolute weight of the lungs of the high concentration group were significantly increased when compared with the control group(p<0.05). At 12 weeks after the injection of neodymium oxide, breath frequency and respiratory minute volume were increased, but inhalation time and expiratory time were decreased. Bronchiolar epithelial hyperplasia, alveolar type II cell hypertrophy/hyperplasia and foreign body granulomatous inflammation were observed in the high exposure group. Conclusions: Body weight decrease, lung absolute weight and breath frequency increase, and pathological lung change were all observed. We found that pulmonary toxicity of neodymium oxide nanoparticles by intratracheal instillation could be confirmed.

Development of High Spectral Resolution Lidar System for Measuring Aerosol and Cloud

  • Zhao, Ming;Xie, Chen-Bo;Zhong, Zhi-Qing;Wang, Bang-Xin;Wang, Zhen-Zhu;Dai, Pang-Da;Shang, Zhen;Tan, Min;Liu, Dong;Wang, Ying-Jian
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.695-699
    • /
    • 2015
  • A high spectral resolution lidar (HSRL) system based on injection-seeded Nd:YAG laser and iodine absorption filter has been developed for the quantitative measurement of aerosol and cloud. The laser frequency is stabilized at 80 MHz by a frequency locking system and the absorption line of iodine cell is selected at the 1111 line with 2 GHz width. The observations show that the HSRL can provide vertical profiles of particle extinction coefficient, backscattering coefficient and lidar ratio for cloud and aerosol up to 12 km altitude, simultaneously. For the measured cases, the lidar ratios are 10~20 sr for cloud, 28~37 sr for dust, and 58~70 sr for urban pollution aerosol. It reveals the potential of HSRL to distinguish the type of aerosol and cloud. Time series measurements are given and demonstrate that the HSRL has ability to continuously observe the aerosol and cloud for day and night.

77 GHz 자동차용 레이더 센서 응용을 위한 Q-밴드 LC 전압 제어 발진기와 주입 잠금 버퍼 설계 (Design of Q-Band LC VCO and Injection Locking Buffer 77 GHz Automotive Radar Sensor)

  • 최규진;송재훈;김성균;;남상욱;김병성
    • 한국전자파학회논문지
    • /
    • 제22권3호
    • /
    • pp.399-405
    • /
    • 2011
  • 본 논문에서는 130 nm RF CMOS 공정을 이용하여 77 GHz 자동차용 레이더 센서에 응용 가능한 Q-band LC 전압 제어 발진기(Voltage Controlled Oscillator: VCO)와 주입 잠금(injection locking) 버퍼를 설계한 결과를 보인다. LC 탱크의 위상 잡음 특성 개선을 위해 전송선을 이용하였고, 버퍼는 능동 소자 교차 결합쌍(cross-coupled pair)의 부성 저항(negative resistance)단을 이용해 발진 유무에 관계없이 높은 출력 전력을 가지도록 설계하였다. 측정된 위상 잡음은 1 MHz 오프셋 주파수에서 -102 dBc/Hz이며, 주파수 조정 범위는 34.53~35.07 GHz이다. 또한, 모든 주파수 조정 범위에서 출력 전력은 4.1 dBm 이상의 값을 가진다. 제작된 칩의 사이즈는 $510{\times}130\;um^2$이며, 1.2 V 바이어스 전압에서 LC 전압 제어 발진기가 10.8 mW, 주입 잠금 버퍼가 50.4 mW의 전력 소모를 가진다.