• Title/Summary/Keyword: High frequency cavity

Search Result 172, Processing Time 0.031 seconds

High Power Cavity Type Tunable Filter Using Switch for 1.5 GHz Band (Switch를 이용한 1.5 GHz 대역 고출력 Cavity 기반 Tunable Filter)

  • Ahn, Sehoon;Lee, Minho;Park, Jongcheol;Jeong, Gyetaek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, the tunable filter based on high power cavity using mechanical switch for 1.5 GHz band is presented. The LPF is inserted to eliminate the spurious wave, coupler is embeded to extract the output power, and then the tunable filter system is configured using mechanical switch. The LPF obtains attenuation over 40 dB between 4 GHz and 12.75 GHz, Coupler is satisfied with coupling value 40 dB and coupling isolation over 55 dB. The tunable filter system using mechanical switch obtains insertion loss 0.88 dB at bypass mode between 1,495.9 MHz and 1,510. 9 MHz, 3.29 dB at fil mode between 1,495.9 MHz and 1,500.9 MHz. It is also satisfied with output power of 132 W at the center frequency 1,498.4 MHz, and switching time below 10 ms.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Considerations on the Factors Reducing the Sound Transmission Loss of the Honeycomb Panels (허니콤재의 투과손실 저하 인자에 대한 고찰)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Jung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2185-2190
    • /
    • 2008
  • In a high speed train, multi-layered panels for floor, side wall and roof are important sound insulating part. As these multi-layered panels require high bending strength vs. weight, corrugated steels or aluminium honeycomb panel are generally used. However, with some inevitable factors, these panels show lower sound insulation performance than that of the plate with the same weight. Transmission loss(TL) often severely decreases in a particular frequency range because of the decrease of the critical frequency, occurrence of local resonance modes and cavity resonance modes, which are not shown in a plate. In this study, frequency range and cause of the TL drop are investigated on the corrugated and honeycomb panels.

  • PDF

A Study of Microwave Output Experiment of Slow Wave Waveguide (지파 도파관을 이용한 마이크로파 출력 실험 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.465-468
    • /
    • 2009
  • The dispersion relation and the characteristic of propagation are measured. The measurements of the dispersion relation are observed by a plunger method employed in slow plasma density by pumping microwaves on the axis are observed in plasma loaded slow wave structure. In case of small incident microwave powers the well known plasma density cavity are observed. At the axial positions of minimal radius in the waveguides, the maxima og the electron density, the plasma potential and the RF electric field are observed in cases of high-power microwaves.

Aeolian Noise from High Voltage Insulators (초고압 송전용 애자의 풍소음 특성)

  • Chu, Jang-Hee;Kim, Sang-Beom;Shin, Koo-Yong;Lee, Seong-Doo;Lee, Dong-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1842-1847
    • /
    • 2000
  • In this paper, a review is attempted for understanding of aeolian noise from high voltage insulators and their aerodynamic noise characteristics were investigated using the low noise wind tunnel. The noise from the insulators was dependent upon the wind speed and their orientation relative to the wind direction. The noise spectrum revealed sharp peak which was found the cavity resonance frequency.

  • PDF

Noise Reduction Characteristics of a High-performance Air-gap Resonator (고효율 에어갭 공명기의 소음 저감 특성)

  • Kang, Sang-Wook;Lee, Jang-Moo;Lim, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • The objective of the paper is to demonstrate the noise reduction characteristics of an air-gap resonator, which is composed of an air gap and a partition sheet. By means of installing the air-gap resonator in an enclosed cavity, acoustic resonance can be effectively suppressed using a small space. In particular, it is revealed from a simple, one-dimensional model that the air-gap resonator serves as the Helmholtz resonator that generally absorbs acoustic resonance energy at its resonance frequency. As a result, the air-8ap resonator also has a resonance frequency, which can be predicted with a simple frequency equation derived in the paper. Finally, verification experiments show that the air-gap resonator can be effectively designed by predicting a reasonable gap thickness using the simple frequency-equation.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

A Hybrid RCS Analysis Code Based on Physical Optics and Geometrical Optics (PO-GO 연계기법을 이용한 RCS 해석코드 개발)

  • Jang, Min-Uk;Myong, Rho-Shin;Jang, In-Mo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.958-967
    • /
    • 2014
  • A hybrid method based on high-frequency asymptotic optics was developed in order to predict the RCS of flying vehicles for RCS reduction studies. In cavity return, the rays are assumed to bounce from the inlet cavity based on the laws of geometrical optics and to exit the cavity via the aperture. In other parts of a flying vehicle, the physical optics method is applied to compute the back-scattered field from the solid surface. The hybrid method was validated by considering simple models of sphere and sphere with cavity. In addition, RCS analysis of a flying vehicle was conducted using the new hybrid electromagnetic scattering method based on physical optics and geometrical optics theories.

Cross-Borehole Incoherent Tomography for High-Contrast Cylindrical Cavity in Lossy Medium by Using Single-Frequency Time-Harmonic Signal (단일 주파수 시간조화 신호를 사용한 손실 매질내에 있는 high-contrast 원기둥 공동의 cross-borehole incoherent 단면영상법)

  • 강진섭
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.1-9
    • /
    • 1998
  • In this paper, an incoherent imaging of a high-contrast cylindrical cavity in a lossy medium illuminated by the time-harmonic cylindrical wave is obtained via the backprojections of the intensity patterns of the forward total electric field in the cross-borehole measurement configuration. The phenomenon that the interference fringes in the intensity pattern, which are caused by the superposition of the incident field and the scattered field with different optical paths, are removed in the backprojection process is interpreted numerically. This imaging method is validated by imaging an air circular cylinder in a lossy medium of $\varepsilon$$_{r}$=9 and $\sigma$ = 0.0005, 0.002 S/m, and the conditions for obtaining better images are investigated.d.

  • PDF