• Title/Summary/Keyword: High flux membrane

Search Result 281, Processing Time 0.021 seconds

NUCLIDE SEPARATION MODELING THROUGH REVERSE OSMOSIS MEMBRANES IN RADIOACTIVE LIQUID WASTE

  • LEE, BYUNG-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.859-866
    • /
    • 2015
  • The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.

Review on Changes in Surface Properties and Performance of Polyamide Membranes when Exposed to Acidic Solutions (산성용액 노출 시 폴리아마이드 분리막의 표면성질 및 투과성능 변화에 관한 총설)

  • Lee, Hyung Kae;Dao, Huyen Thi Thanh;Kang, Wooseok;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Various kind of solutions need to be separated, purified, and concentrated using membranes in the field of industries. However, when the solution contains strong acids, the use of membrane is limited. Acid resistant membrane currently available in market does not show high efficiency of flux. This review explains the causes and mechanisms of changes in surface properties and performance of polyamide membranes when exposed to acidic solutions, and this can be used in the development of a membrane with acid resistance and high flux.

Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane (세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성)

  • Lee Yong Taek;Song Min-Ho
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.192-200
    • /
    • 2004
  • It is an anaerobic germ that Lactobacillus cell concentrated using ceramic membrane has high stability and long lifetime as compared with polymeric membrane. The effects of operating pressure, temperature, crossflow velocity on cell harvesting have been studied. Also the variation of flux and transmembrane pressure (TMP) with increasing concentration ratio and the change of TMP at constant concentration ratio (volumetric concentration factor: VCF) regarding the optimization have been examined. It showed that the permeate flux increased gradually with the increasing of transmembrane pressure, crossflow velocity, and volumetric concentration factor. The higher initial flux was due to the reduction of viscosity at elevated temperature. However, as operating time progressed, the effect of temperature was negligible since the effect of viscosity became minor. As a result, that operate in a constant concentration ratio, decreased degree could know that become slowly although the flux decreases according as operating time progressed. The flux is a very stable in the condition of constant VCF range. The yield of Latobaciilus (PS 406) which was cultivated at $37^{\circ}C$ was concentrated about 4.9{\times}10^9$ after operation.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux (ANN 및 SVM을 사용하여 투과 유량을 예측하는 동적 막 여과 공정 모델링)

  • Soufyane Ladeg;Mohamed Moussaoui;Maamar Laidi;Nadji Moulai-Mostefa
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2023
  • Two computational intelligence techniques namely artificial neural networks (ANN) and support vector machine (SVM) are employed to model the permeate flux based on seven input variables including time, transmembrane pressure, rotating velocity, the pore diameter of the membrane, dynamic viscosity, concentration and density of the feed fluid. The best-fit model was selected through the trial-error method and the two statistical parameters including the coefficient of determination (R2) and the average absolute relative deviation (AARD) between the experimental and predicted data. The obtained results reveal that the optimized ANN model can predict the permeate flux with R2 = 0.999 and AARD% = 2.245 versus the SVM model with R2 = 0.996 and AARD% = 4.09. Thus, the ANN model is found to predict the permeate flux with high accuracy in comparison to the SVM approach.

Numerical Analysis of Concentration Polarization for Spacer Configuration in Plate Type Membrane Module (평판형 분리막 모듈 내 스페이서 형태에 따른 농도분극에 관한 수치해석)

  • Shin, Ho Chul;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • As the spacer in the membrane module provide the channel space to flow the feed solution smoothly and induce the flow turbulence, it could help to reduce both the concentration polarization and to take the long-term operation of membrane modules with high permeate flux by mixing the accumulated contaminants on the membrane surface into the bulk solution. In this study, the concentration distribution in membrane module with respect to the spacers which have the cross-sectional shapes of circle, cross, diamond and hexagon, the angles of spacer configuration, solute rejection and permeate flux were interpreted and optimized numerically using the "COMSOL Multiphysics" software. The concentration on the membrane surface was kept the lowest level for the cross-shape among the above four types of spacers. Also the 30 degree spacer configuration was showed as the most efficient case. The concentrations on the membrane surface at the module outlet for without spacer and the cross shape with the 30 degree spacer configuration were 2.09 and 1.29 times higher than those at inlet, respectively. The reduction effect of concentration polarization increased rapidly as the permeate flux increased.

Evaluation of the Characteristics of High-Flux Reverse Osmosis Membranes with Various Additives (다양한 첨가제에 따른 고투과성 역삼투막의 특성평가)

  • Hyun Woong Kwon;Kwang Seop Im;Gede Herry Arum Wijaya;Seong Min Han;Seong Heon Kim;Jun Ho Park;Dong Jun Lee;Sang Min Eom;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.427-438
    • /
    • 2023
  • In this study, in order to improve the performance of the reverse osmosis membrane with high water flux and high salt rejection, a study was conducted on the evaluation of characteristics according to the curing temperature and time during various additives and interfacial polymerization. The morphology of the membrane with no additives and the membrane with additives both showed a "rigid-and-valley" structure, confirming that the polyamide layer was successfully polymerized on the surface of the porous support layer. In addition, the additive of 2-Ethyl-1,3-hexanediol (EHD) had improved hydrophilicity and water flux, which was confirmed by measuring the contact angle. Finally, a highly permeable TFC membrane with NaCl and MgSO4 salt rejection of 97.78% and 98.7% and a high water flux of 3.31 L/(m2⋅h⋅bar) was prepared.

고투과량 (High Flux) 복층 세라믹막의 제조

  • 현상훈;강범석;조철구;강환규
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.33-33
    • /
    • 1994
  • 세라믹 막을 이용한 정밀여과 (microfiltration)나 한외여과(ultrafiltration)에 있어서 가장 중요한 점은 높은 선택적 투과성(permselectivity)을 유지하면서도 투과량(permeation flux)이 각각 500 ~ 1000 $l/m^2.hr$와 30 ~ 100 $l/m^2.hr$ 정도로 상당히 높아야 한다. 기체분리 공정에서도 마찬가지로 높은 투과성이 요구되기 때문에 이상과 같은 고투과량을 갖는 복층 세라믹막의 제조방법과 투과특성에 대한 연구를 수행하였다.

  • PDF

Effect of post-treatment routes on the performance of PVDF-TEOS hollow fiber membranes

  • Shadia R. Tewfik;Mohamed H. Sorour;Hayam F. Shaalan;Heba A. Hani;Abdelghani G. Abulnour;Marwa M. El Sayed;Yomna O. Mostafa;Mahmoud A. Eltoukhy
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.85-93
    • /
    • 2023
  • Membrane separation is widely used for several applications such as water treatment, membrane reactors and climate change. Cross-linked organic-inorganic hybrid polyvinylidene fluoride (PVDF) / Tetraethyl orthosilicate (TEOS) was adopted for the preparation of optimized hollow membrane (HFM) for membrane distillation or other low pressure separators for mechanical properties and permeability under varying pretreatment schemes. HFMs were prepared on semi-pilot membrane fabrication system. Novel adopted post-treatment schemes involved soaking in glycerol, magnesium sulphate (MgSO4), sodium hypochlorite (NaOCl), and isopropanol for different durations. All fibers were characterized for morphology using a scanning electron microscope (SEM), surface roughness using atomic force microscope (AFM), elemental composition by examining Energy Dispersive Spectroscopy (EDS), water contact angle (CA°) and porosity. The performance of the fibers was evaluated for pure water permeation flux (PWF). Post-treatment with MgSO4 gave the highest both tensile modulus and flux. Assessment of properties and performance revealed comparable results with other organic-inorganic separators, HF or flat. In spite of few reported data on post treatment using MgSO4 in presence of TEOS, this proves the potential of low cost treatment without negative impact on other membrane properties. The flux is also comparable with hypochlorite which manifests substantial precaution requirements in actual industrial use.The relatively high values of flux/bar for sample treated with TEOS, post treated with MgSO4 and hypochlorite are 88 and 82 LMH/bar respectively.