• Title/Summary/Keyword: High density plasma

Search Result 890, Processing Time 0.025 seconds

Characterization of Diamond-like Carbon Films Prepared by Magnetron Plasma Chemical Vapor Deposition

  • Soung Young Kim;Jai Sung Lee;Jin Seok Park
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Thin films of diamond-like carbon(DLC) can be successfully deposited by using a magnetron plasma chemical vapor deposition (CVD) method with an rf(13.56 MHz) plasma of $C_dH_8$. Plasma characteristics are analyzed as a function of the magnetic field. As the magnetic field increases, both electron temperature ($T_e$) and density ($n_e$)increase, but the negative dc self-bias voltage (-$V_{ab}$) decreases, irrespective of gas pressures in the range of 1~7 mTorr. High deposition rates have been obtained even at low gas pressures, which may be attributed to the increased mean free path of electrons in the magentron plasma. Effects of rf power and additive gas on the structural properties of DLC films aer also examined by using various technique namely, TED(transmissio electron diffraction) microanalysis, FTIR, and Raman spectroscopies.

  • PDF

Improved Dit between ALD HfAlO Dielectric and InGaAs Substrate Using NH3 Plasma Passivation (InGaAs 위의 NH3 Plasma Passivation을 이용한 ALD HfAlO유전체 계면전하(Dit) 향상)

  • Choi, Jae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • The effect of $NH_3$ plasma passivation on the chemical and electrical characteristics of ALD HfAlO dielectric on the InGaAs substrate was investigated. The results show that $NH_3$ plasma passivation exhibit better electrical & chemical performance such as much lower leakage current, lower density of interface trap(Dit) level, and low unstable interfacial oxide. $NH_3$ plasma passivation can effectively enhance interfacial characteristics. Therefore $NH_3$ plasma passivation improved the HfAlO dielectric performance on the InGaAs substrate.

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Preparation of Silicon Nanoparticles for the Device of Photoluminescence (발광소자를 위한 실리콘 나노 미립자 제작)

  • Choi, Byoung-Jung;Lee, Jung-Hui;Yang, Sung-Chae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.131-132
    • /
    • 2006
  • We experimentally demonstrated the synthesis of silicon nanoparticles by using high-density ablation plasma prepared by the interaction of an intense pulsed light-ion beam (LIB) with a target. known as the intense pulsed ion beam evaporation (IBE) method. Light emission was obtained from the silicon nanoparticles. It was determined that the ambient gas reaction is very important and useful method to obtain the photoluminescence from the silicon nanoparticles.

  • PDF

The characteristics of Magnetized plasma and its applications to Etching (자화된 플라즈마의 특성 및 식각에의 응용)

  • Shin, Kyoung-Sop;Lee, Ho-Jun;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.261-263
    • /
    • 1993
  • The effects of the magnetic field and gas pressure on the etching characteristics were investigated in the axial magnetic field enhanced RIE system. This system has many advantages compared with the conventional RIE system ; the capability of operating at low pressure, low self-bias voltage, high electron density and high etch rate in the low pressure, but also has disadvantages such as the nonconformity of plasma density which intensifies as the magnitude of magnetic field increases. To overcome this problem we made some grooved anode and tried to find the optimal pressure and B-field strength.

  • PDF

A Study on the Glow Discharge Characteristics of Facing Target Plasma Process (대향 음극형 플라즈마 프로세스의 글로우 방전특성에 관한 연구)

  • Park, Chung-Hoo;Cho, Jung-Soo;Kim, Kwang-Hwa;Sung, Youl-Mool
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.478-484
    • /
    • 1994
  • Facing target dc sputtering system developed by Hoshi et al. has simple configuration and high deposition rate under moderate substrate temperature in the range of pressure 5x10S0-4T - 1x10S0-2T torr. In this system, magnetic field should be applied perpendicular to the target surface in order to confine high energy secondary electrons between two targets. Because of this magnetic field, the glow discharge characteristics are very different from dc planar diode system showing some unstable discharge region. In this paper, the glow discharge characteristics of this system have been studied under the condition of Ti targets with Ar-NS12T(10%) as working gas. It is found that this system has stable discharge region under the discharge current density of 15-30(mA/cmS02T). The plasma density and electron temperature are in the range of 10S010Y - 10S011T(CMS0-3T) and 2.5-5(eV), respectively.

Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter (열전변환 장치의 특성 분석에 대한 연구)

  • Lee, Deuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.

Design of the Experimental Simulator of Magnetic Sails

  • Funaki, Ikkoh;Fujita, Kazuhisa;Yamakawa, Hiroshi;Ogawa, Hiroyuki;Nonaka, Satoshi;Nakayama, Yoshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.278-281
    • /
    • 2004
  • To realize magnetic sails, momentum of the solar wind should be efficiently transferred to a spacecraft via magnetic field, which is produced around a spacecraft. In this paper, two important physical processes are addressed: 1) diffusive processes caused by plasma turbulence at the magnetospheric boundary around the spacecraft; and 2) field aligned current loops that will electrically connect the magnetospheric boundary and the spacecraft. The idea of the magnetic sails will be demonstrated by an experimental simulator, in which a fast plasma beam will penetrate into a dipole magnetic field. For that purpose, the two important physical processes should be scaled down to a small laboratory experiment in a space chamber. From the scaling considerations, the interaction can be scaled down if high-speed and high-density $(10^{19}m^{-3})$ plasma jet is used with 1-T-class magnetic field.

  • PDF

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso;Seher Saleem;Altaf H. Nizamani;Hussain Saleem;Abdul Majid Soomro;Waseem Ahmed Bhutto;Saifullah Jamali;Nek Muhammad Shaikh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.200-206
    • /
    • 2024
  • Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.

Effects of Lifestyle and Dietary Behavior on Cardiovascular Risks in Middle-aged Korean Men

  • Yim, Kyeong-Sook
    • Journal of Community Nutrition
    • /
    • v.2 no.2
    • /
    • pp.119-128
    • /
    • 2000
  • Lifestyle and dietary behavior intervention as the primary prevention of lipid disorder seems safe and compatible with other treatments of cardiovascular diseases. Cross-sectional associations between lifestyle factors and dietary behavioral factors with plasma lipid and lipoprotein levels were analyzed in 189 middle-aged men in Suwon, Korea. Overnight fasting plasma levels of total cholesterol, high-density lipoprotein(HDL)-cholesterol, triacylglycerol and glucose were analyzed. Blood pressure and anthropometric data were also measured. Lifestyle factors such as smoking status, alcohol consumption and frequency of physical exercise were evaluated by a self-administered questionnaire. Questions regarding dietary behavior were also asked. The subjects were 43.8%${\pm}$7.9 years old, and 23.8%${\pm}$2.6kg/m$^2$. From stepwise regression analyses, significant correlates with total cholesterol level were body mass index(BMI), alcohol intake(negative), age and coffee drinking(model R$^2$=14.3%). BMI, breakfast-skipping, age, and sleeping hours were significant for triacylglycerol level(model R$^2$=15.8%). BMI, alcohol drinking(negative), age, and coffee drinking were significant for low-density lipoprotein(LDL)(model R$^2$=11.7%). Age(negative), BMI(negative), alcohol drinking, stress level(negative), physical exercise, and cigarette smoking(negative) were significant for high-density lipoprotein(HDL)(model R$^2$=12.1%). From stepwise regression analyses, excluding BMI and age as factors in the model, alcohol intake(negative) and coffee drinking were significantly correlated with total cholesterol level(model R$^2$=4.4%) : breakfast-skipping with triacylglycerol(model R$^2$=3.2%) : alcohol intake (negative) with LDL level(model R$^2$=3.4%) : alcohol intake, physical exercise and stress level(negative) with HDL level(model R$^2$=6.3%). The findings suggest that a healthy daily lifestyle and dietary behavior may have an anti-atherogenic effect by altering plasma lipid and lipoprotein levels in middle-aged Korean men. (J Community Nutrition 2(2) : 119∼128, 2000)

  • PDF