• 제목/요약/키워드: High damping rubber bearing

검색결과 37건 처리시간 0.022초

고감쇠면진고무베어링의 유한요소해석 (Finite Element Analysis of High Damping Rubber Bearing for Seismic Isolation)

  • 전정배;김홍주;정경수;김계수;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.292-297
    • /
    • 2000
  • The seismic isolation technology has appeared to be increasingly necessary for highway bridges, LNG tank, nuclear power plant, and building structures in view of earthquake vibrations. Also high-technology industries require effective seismic protection. The Seismic Isolation Bearing - High Damping Rubber Bearing - system has been counted as the most effective way fur seismic isolation, which is now under development and widely used in industries. Here, the commercial FEM software for nonlinear analysis, MARC, has provided force-displacement curves on the rubber system. The analyses have been carried out about fourteen cases; 25%, 50%, 75%, 100%, 125% and 150% horizontal displacements with a different frequency - 0.01Hz and 0.50Hz - and 100% horizontal displacement with four different frequency - 0.01Hz, 0.16667Hz, 0.3333Hz and 0.50Hz. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test and planar shear test.

  • PDF

고감쇠 면진베어링 고무시편의 유한요소 전단해석 (Finite Element Shear Analysis of 3-bar Lap Rubber Specimen for High Damping Rubber Bearing)

  • 이재한;유봉;박기수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.419-425
    • /
    • 2001
  • The shear modulus of 3-bar lap rubber shear dynamic test specimen is investigated through incremented shear strain tests. The shear force-strain relation of rubber specimen is also calculated by ABAQUS using hyper-elastic material properties of high damping rubber. The analysis results are compatible with shear dynamic tests of 3-bar lap rubber specimen and 1/8 reduced-scale laminated rubber bearing

  • PDF

기기면진을 위한 면진장치의 거동분석실험 (II) : 감쇠특성 분석 (An Experimental Study of the Seismic Isolation Systems (or Equipment Isolation : Evaluation of Damping Effect)

  • 전영선;김민규;최인길;김영중
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.411-418
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. for this Purpose, shaking table tests were performed. The natural rubber bearing (NRB) and high damping rubber bearing (HDRB) were selected for the isolation. Peak ground acceleration, damping characteristics of isolation system and frequency contents of selected earthquake motions were considered. finally, it is presented that the NRB and HDRB systems are effective for the small equipment isolation and the damping of isolation systems can be affected to the seismic isolation effect.

  • PDF

진동대 실험 및 해석을 통한 고감쇠 고무받침의 면진성능 연구 (A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis)

  • 김후승;오주
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.601-611
    • /
    • 2016
  • 최근 빈번하게 발생하는 크고 작은 지진에 대비하여 구조물의 지진에 대한 안전성을 확보하기 위한 방안으로 지진격리시스템을 이용한 연구개발과 사용이 점차 증가하고 있다. 지진격리시스템의 하나인 고감쇠 고무받침(HDRB)는 특수한 고감쇠 고무(HDR)를 이용한 적층형 고무받침으로서 유사 지진격리장치인 납 고무받침에 비해 감쇠기능이 다소 떨어지는 단점이 있어 활용도가 높지 않았다. 그러나, 고감쇠 고무받침은 재료와 형상이 유사한 천연고무받침의 비해 우수한 감쇠력을 가지고 있으며 기존 납 고무받침의 경우 납의 유해성이 문제되어 납을 사용하지 않은 고감쇠 고무받침에 대한 연구가 증가하고 있다. 본 연구에서는 고감쇠 고무받침을 대상으로 압축응력 의존성 및 주파수 의존성, 반복하중 의존성 등 다양한 특성에 대하여 실험을 실시하였다. 그리고 여러 계기지진파 상태에서 고감쇠 고무받침의 내진성능을 평가하기 위해 진동대 실험과 분석을 수행하였다. 축소교량에 고감쇠 고무받침을 적용한 모델을 사용했고, 지진격리와 비 지진격리로 구분하여 진행하였다. 그 결과 고감쇠 고무받침을 적용할 경우 비 지진격리의 경우에 비해 높은 감쇠효과를 보였으나 Mexico City와 같은 연약지반의 구조물에 지진격리를 적용할 경우 오히려 구조물의 응답이 증가하는 양상을 나타내 지진격리장치 적용성에 주의해야 할 것으로 판단된다.

층응답을 고려한 소형면진장치의 진동대실험 (A Shaking Table Test of Small Isolation System Considering the Floor Response)

  • 김민규;전영선;이경진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.

Design approach of high damping rubber bearing for seismic isolation

  • Tiong, Patrick L.Y.;Kelly, James M.;Or, Tan T.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.303-309
    • /
    • 2017
  • Structural control through seismic isolation using elastomeric rubber bearing, which is also known as High Damping Rubber Bearing (HDRB), has seen an increase in use to provide protective from earthquake, especially for new buildings in earthquake zones. Besides, HDRB has also been used in structural rehabilitation of older yet significant buildings, such as museums and palaces. However, the present design approach applied in normal practice has often resulted in dissimilar HDRB dimension requirement between structural designers and bearing manufacturers mainly due to ineffective communication. Therefore, in order to ease the design process, most HDRB manufacturers have come up with catalogs that list all necessary and relevant product lines specifically for structural engineers to choose from. In fact, these catalogs contain physical dimension, compression property, shear characteristic, and most importantly, the total rubber thickness. Nonetheless, other complicated issues, such as the relationship between target isolation period and displacement demand (which determines the total rubber thickness), are omitted due to cul-de-sac fixing of these values in the catalogs. As such, this paper presents a formula, which is derived and extended from the present design approach, in order to offer a simple guideline for engineers to estimate the required HDRB size. This improved design formula successfully minimizes the discrepancies stumbled upon among structural designers, builders, and rubber bearing manufacturers in terms of variation order issue at the designing stage because manufacturer of isolator is always the last to be appointed in most projects.

납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구 (An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio)

  • 최정호;김운학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.217-224
    • /
    • 2009
  • 지진으로부터 구조물의 안전을 확보하기 위하여 많은 공학자들의 연구가 계속되고 있다. 본 연구에서는 납의 이력특성을 이용하여 지진하중을 감소시키는 LRB(lead rubber bearing)의 감쇠능력에 대한 실험적 연구를 수행하였다. 납 플러그의 면적비를 주요변수로 설계한 2종류 12개의 시험체를 제작하여 변위제어시험을 시행하였다. 감쇠비 결정을 위한 이력감쇠곡선을 얻기 위하여 2개의 시험체가 한 쌍을 이루도록 배치하고 3회 반복이력시험을 수행하였다. 실험결과로부터 본 연구에서의 납 플러그 면적비가 큰 LRB는 지진시 구조물의 지진하중을 감소시키는데 충분한 감쇠비를 보유하고 있음을 알 수 있었다.

섬유보강 면진베어링의 실험적 특성 해석 (An Experimental Study on Fiber Reinforced Elastomeric Bearing)

  • 문병영;강경주;강범수;김계수
    • 한국지진공학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-6
    • /
    • 2002
  • 면진베어링으로 기존에 사용되고 있는 철판보강 면진베어링에서 철판을 섬유로 대체하여 섬유보강 면진베어링을 설계 및 제작하였다. 섬유면진보강베어링의 특성을 파악하기 위해서 철판보강 면진베어링과 섬유보강 면진베어링에 대해 수평실험과 압축실험을 수행하였다. 시험결과 섬유보강 면진베어링의 유효 감쇠는 천연고무 면진베어링에 비해서 높았다. 이 결과는 지진하중하에서 섬유보강 면진베어링은 에너지 분산능력이 뛰어나다는 것을 의미한다. 이 연구결과로 인해 섬유보강 면진베어링이 저가건물에 널리 사용될 수 있을 것으로 기대된다.

Implication of rubber-steel bearing nonlinear models on soft storey structures

  • Saiful Islam, A.B.M.;Hussain, Raja Rizwan;Jumaat, Mohammed Zamin;Mahfuz ud Darain, Kh.
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.603-619
    • /
    • 2014
  • Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.