• Title/Summary/Keyword: High Wind Speed

Search Result 971, Processing Time 0.022 seconds

Temporal and Spatial Variations of Marine Meteorological Elements and Characteristics of Sea Fog Occurrence in Korean Coastal Waters during 2013-2017 (2013~2017년 연안해역별 해양기상요소의 시·공간 변화 및 해무발생시 특성 분석)

  • Park, So-Hee;Song, Sang-Keun;Park, Hyeong-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to -5.7℃ for SST (up to 5.8℃ for Temp-SST).

Hydrographical and Bio-ecological Characteristics of Heterotrophic Red Tide Dinoflagellate Noctiluca scintillans in Semi-enclosed Gwangyang Bay, Korea (반폐쇄적 내만 광양만에서 종속영양적조생물 야광충의 수문학적 및 생태학적 특성)

  • Baek, Seung Ho;Kim, Dongseon;Choi, Hyun-Woo;Kim, Young Ok
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.308-321
    • /
    • 2013
  • In order to understand the population dynamics of red tide dinoflagellate Noctiluca scintillans, we examined its hydrographical and bio-ecological characteristics at 19 to 20 stations of Gwangyang Bay during all four seasons from 2010 to 2012. During the 3-year period, N. scintillans was seasonally abundant during summer with water temperatures ranging from $15^{\circ}C$ to $22^{\circ}C$ and salinity ranging from 25 psu to 30 psu. On the other hand, N. scintillans population density significantly decreased in spring, fall and winter, although they were present even in lower temperatures (< $4^{\circ}C$). However, high water temperature (> $27^{\circ}C$) and low salinity (< 12 psu) led to the disappearance of N. scintillans population. Chl-a concentration in winter, spring and fall was positively correlated with N. scintillans population density, whereas the N. scintillans population was negatively correlated with Chl-a concentration in summer. This implies that densities of prey population such as diatoms are one of important contributing factor for maintaining abundance of N. scintillans in winter, spring and fall and for increasing abundance of N. scintillans in summer. During summer season, bio-accumulation of N. scintillans population by the wind from southwest is also considered to be a key factor in triggering the formation of large-scale blooms in Gwangyang Bay.

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

The Meteorological, Physical, and Chemical Characteristics of Aerosol during Haze Event in May 2003 (2003년 5월의 연무 관측시 에어로졸의 기상 · 물리 · 화학 특성)

  • Lim, Ju-Yeon;Chun, Young-Sin;Cho, Kyoung-Mi;Lee, Sang-Sam;Shin, Hye-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.697-711
    • /
    • 2004
  • Severe haze, mist, and fog phenomena occurred in the central part of Korea during 15~25 May 2003 resulted in poor visibility and air quality. When these phenomena occurred, Korean peninsula was under the effects of anticyclone. The atmosphere was stable, and wind speed was so weak. Under this meteorological conditions, air quality was worse and worse. The characteristics of aerosol in Seoul, Incheon, and Gosan (Jeju) during this period are investigated from the $PM_{10}$. TSP concentrations and aerosol number concentrations. Concentrations of $PM_{10}$ and TSP measured at KMA increased upto 176 and 230 J.${\mu}g/m^3$ on 22 May 2003, respectively. Aerosol number concentrations of size range from 0.82 to 6.06 ${\mu}m$ increased in Seoul on 17, 19, and 21~24 May 2003, and the concentrations of $NO_2$ and $SO_2$had maximum value of 0.165 ppm at Gwanak Mt. and 0.036 ppm at Guro-dong on 23 May 2003, respectively. Result from analysis on heavy metal elements showed high concentrations of Zn, Pb, Cr, Ni, Cu, and Cd during 20~24 May 2003. This event is examined by comprehensive analyses of synoptic weather conditions, satellite images, concentrations of suspended particles and air pollutants, and heavy metal elements.

A study on the temperature guidelines for weapon system test and evaluation in the Korean peninsula (무기체계의 환경시험을 위한 한반도의 온도기준 설정에 관한 연구)

  • Moon, Jayoung;Kim, DongGil;Sung, InChul;Hong, YeonWoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1593-1600
    • /
    • 2016
  • This paper suggests a temperature guidance for requirements which must be addressed in the preparation of specifications for military equipment used in land applications in the Korean peninsula. In general, the equipment should be designed to operate during all but a certain small percentage of the time. Daegu and Yangpyeong are the hottest and coldest regions by month, respectively, based on surface weather observations over 132 regions from 1904 to 2014. The 1-percent high and low temperatures for land environment in the South Korea are $38.7^{\circ}C$, and -$29.0^{\circ}C$, respectively. This paper also presents the temperature values occurring for specified frequencies of occurrence during the most severe month. Diurnal cycles associated with the hottest and coldest top one-percent temperatures, including associated solar radiation, relative humidity, and wind-speed are provided.

Aerodynamic Interference Effect of Aircraft Wing Tip Vortex in Formation Flight (편대비행상태에서 날개 끝 와류의 공력 간섭 효과)

  • Cho, Hwan-Kee;Lee, Sang-Hyun;Lee, Soontae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.849-854
    • /
    • 2013
  • Experimental study was conducted to investigate aerodynamic interference effect of wing tip vortex in formation flight of high speed aircraft. In formation flight, wing tip vortex produced by leading aircraft can affect on the aerodynamic characteristics of trailing aircraft. The interference effect of flow is varied with distances between wing tips of leading and trailing aircraft. It is confirmed, in this study, that the interference of wing tip vortex generated from the leading aircraft makes the aerodynamic forces and moments of the trailing aircraft with the vertical or horizontal positions of the trailing aircraft. Especially, the lift coefficients of trailing aircraft were highly increased at y/b=-0.125, z/b=0.0 or deeply decreased at y/b=-0.5, z/b=0.38. The interfering pattern of wing tip vortices from two aircraft is precisely observed.

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(I) (응축충격파와 경계층 간섭의 피동제어(I))

  • Choe, Yeong-Sang;Jeong, Yeong-Jun;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.316-328
    • /
    • 1997
  • There were appreciable progresses on the study of shock wave / boundary layer interaction control in the transonic flow without nonequilibrium condensation. But in general, the actual flows associated with those of the airfoil of high speed flight body, the cascade of steam turbine and so on accompany the nonequilibrium condensation, and under a certain circumstance condensation shock wave occurs. Condensation shock wave / boundary layer interaction control is quite different from that of case without condensation, because the droplets generated by the result of nonequilibrium condensation may clog the holes of the porous wall for passive control and the flow interaction mechanism between the droplets and the porous system is concerned in the flow with nonequilibrium condensation. In these connections, it is necessary to study the condensation shock wave / boundary layer interaction control by passive cavity in the flow accompanying nonequilibrium condensation with condensation shock wave. In the present study, experiments were made on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of the porosity, the porous wall area and the depth of cavity on the pressure distribution around condensation shock wave. It was found that the porosity of 12% which was larger than the case of without nonequilibrium condensation produced the largest reduction of pressure fluctuations in the vicinity of condensation shock wave. The results also showed that wider porous area, deeper cavity for the same porosity of 12% are more favourable "passive" effect than the cases of its opposite. opposite.

Design and Implementation of Reference Evapotranspiration Database for Future Climate Scenarios (기후변화 시나리오를 이용한 미래 읍면동단위 기준증발산량 데이터베이스 설계 및 구축)

  • Kim, Taegon;Suh, Kyo;Nam, Won-Ho;Lee, Jemyung;Hwang, Syewoon;Yoo, Seung-Hwan;Hong, Soun-Ouk
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.71-80
    • /
    • 2016
  • Meanwhile, reference evapotranspiration(ET0) is important information for agricultural management including irrigation planning and drought assessment, the database of reference evapotranspiration for future periods was rarely constructed especially at districts unit over the country. The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides several meteorological data such as precipitation, average temperature, humidity, wind speed, and radiation for long-term future period at daily time-scale. This study aimed to build a database for reference evapotranspiration using the climate forecasts at high resolution (the outputs of HadGEM3-RA provided by Korea Meteorological Administration (KMA)). To estimate reference evapotranspiration, we implemented four different models such as FAO Modified Penman, FAO Penman-Monteith, FAO Blaney-Criddle, and Thornthwaite. The suggested database system has an open architecture so that user could add other models into the database. The database contains 5,050 regions' data for each four models and four Representative Concentration Pathways (RCP) climate change scenarios. The developed database system provides selecting features by which the database users could extract specific region and period data.

A New Steady Approach to Predict the Transonic Buffet Onset (천음속 버펫 발단 예측을 위한 새로운 정상 접근 방법)

  • Jeong, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.12-18
    • /
    • 2006
  • A new steady approach has been developed to predict the transonic buffet onset of a high speed aircraft. In this paper, the flow is assumed to be steady for the buffet onset. The present study involves the analysis of a distinct change in the variation of various static aerodynamic parameters. These distinct changes indicates the onset of transonic buffet. Among the various aerodynamic parameters considered in this study, the variation in the center of pressure has shown to provide a clearest indicator of transonic buffet onset. This new steady approach can be applied to predict the transonic buffet onset for airfoils with shock induced separation bubble and for large swept wings with small aspect ratios. Good agreements have been obtained compared with unsteady wind tunnel buffet test data. Based on the results obtained the new steady approach, it can be newly suggested that the distinct slope changes of the center of pressure curve can be used as an indicator of buffet onset for the steady experimental method on a full aircraft configuration.