• Title/Summary/Keyword: High Velocity

Search Result 5,001, Processing Time 0.035 seconds

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Measurement of Laminar Burning Velocity of Endothermic Fuel Surrogates (흡열분해 모사연료의 층류화염 전파속도 측정)

  • Jin, Yu-In;Lee, Hyung Ju;Han, Jeongsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.67-75
    • /
    • 2019
  • The laminar burning velocity of endothermic fuel surrogates is measured in this study, in order to investigate combustion characteristics of aviation fuel after being used as coolant in an active cooling system of a hypersonic flight vehicle. A Bunsen burner was manufactured such that the laminar burning velocity can be taken for two types of surrogate fuels, SF-1 and 2. The results showed that the burning velocity of surrogate fuels was faster at high equivalence ratio conditions than that of the reference fuel (RF), and specifically, the velocity of SF-1 had the maximum value at the highest equivalence ratio compared with those of SF-2 and RF.

A Study On The Gas-Flow In the Four-Stroke Engine At Compression Stroke (사행정기관의 압축행정시의 가스유동에 관한 연구)

  • 이기명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3970-3979
    • /
    • 1975
  • On account of the development of the high speed internal combustion engines, several methods for increasing burning velocity has been investigated lately. Installation of a squash area on a cylinder head is one of the simple and practical method to induce the strong tubulant flow of air-fuel mixtureinto a combustion chamber. In this study, a four-stroke engine used for agricultural purpose was tested as an experimental model. A mathematical model of the squash velocity was derived, and also, several characteristics of the squash phenomena during the motoring of the engine used as a modelwere investigated. The results obtained were as follows: (1) Mathematical model of squash velocity was established and cheked (2) Squaash velocity and engine speed were found to be proportional to the squash area while they were inversely proportional to the squash width. (3) Squash velocity and crank angle at which the squash velocity become its peak were influenced by the magnitude of squash clearance: increase of squash clearance made squash velocity reduced acd made the peak of the squash velocity for from the top dead center and (4) When the squash area is divided in small areas baving unit width along the squash section, squash velocity at each unit width was proportional to the magnitude of the squash distance covered by the unit width.

  • PDF

Seismic Performance Evaluation of Seismically Isolated Nuclear Power Plants Considering Various Velocity-Dependent Friction Coefficient of Friction Pendulum System (마찰진자시스템의 마찰계수 변화에 따른 면진된 원전구조물의 거동특성 비교)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb's friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between low-and fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.

P-wave velocity structure in Southern Korea by using Velest program (Velest를 이용한 남한 지역의 P파 속도구조 분석)

  • 전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) has been operating Korean Earthquake Monitoring System(KEMS) to archive the real-time data stream and to determine event parameters (epicenter origin time and magnitude)by the automatic processing and analyst review. To do this KEMS uses the Vindel Hue's velocity model which was derived from Wonju KSRS data. Because KIGAM now receives the real-time data from many stations including Wonju KSRS Cholwon seismo-acoustic array Uljin Wolsung Youngkwang Taejon Seoul Kimcheon Taegu etc. the proper velocity model should be established around the Korean peninsula, In this study P were velocity structures was derived from VELEST program using 69 events among the 835 events determined by KEMS in 1999 which were recorded by at least 5 stations. General trend of velocity structure was similar to Sang Jo Kim's model but velocity value was low in crust and high in upper mantle. Due to the sensitivity of inversion results to the initial input model the artificial short and blast data might be added.

  • PDF

Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

  • Anwar Hossain, Khandaker M.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2009
  • The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature ($4^{\circ}C$) and different elevated temperatures of up to $110^{\circ}C$. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

New Sludge Settling Characteristic Index Considering Sludge Settling Velocity (슬러지침전속도를 고려한 새로운 슬러지침전특성지표의 설정에 관한 연구)

  • Park, Suk Gyun;Kang, Seon-Hong;Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.451-460
    • /
    • 2006
  • While sludge settles down in a batch column, sludge concentration becomes high. Sludge concentration change is one of the most critical causes of the sludge settling velocity variation. Therefore, sludge concentration change causes sludge index to change. SVI is more sensitive than other sludge indexes to the change of sludge concentration. And if sludge-water interface has reached final height within 30minutes, SVI is not suitable for prediction of sludge settling characteristic, Therefore, SVIs of each sludge are, in some cases, different although each sludge has the same settling velocity. But SVI has been widely used to interpret sludge settling characteristic by a simple testing method. This work has two purposes. The first purpose is to predict sludge settling velocity by using sludge-water interface settling velocity. And the second purpose is to develop new sludge settling characteristic index to exactly interpret sludge settling characteristic by overcoming the limit of SVI.

The Black Hole Mass - Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies

  • Yoon, Yo-Sep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2012
  • Given high accretion rates close to the Eddington limit, narrow-line Seyfert 1 galaxies (NLS1) are arguably the most important AGN subclass in investigating the origin of the black hole mass-galaxy stellar velocity dispersion ($M_{BH}-{\sigma}$) relation. Currently, it is highly debated whether NLS1s are offset from the local $M_{BH}-{\sigma}$ relation. The controversy mainly comes from the fact that the [OIII] line width has been used as a proxy for stellar velocity dispersion due to the difficulty of measuring stellar velocity dispersion in NLS1s. Using the SDSS spectra of a sample of 105 NLS1, we performed multi-component fitting analysis to separate stellar absorption lines from strong AGN [FeII] complex in order to directly measure stellar velocity dispersion. We will present the result of decomposition analysis and discuss whether NLS1s follow the same $M_{BH}-{\sigma}$ relation based on the direct measurements of stellar velocity dispersion.

  • PDF

Aerodynamic Properties of Granular Agrichemicals (입제 비료 및 농약의 공기역학적 성질)

  • 이성호;이중용;정창주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-114
    • /
    • 1998
  • Granule application with a boom has merits of accurate application and high field efficiency. In order to develop a boom granule applicator, aerodynamic properties of agrichemicals should be investigated. This study was accomplished to investigate aerodynamic properties of granules and factors affecting on them. The tested agrichemicals were urea, compound fertilizer (17-21-17), sand and zeolite. Basic physical properties of granules such as true density, sphericity, and arithmetic mean diameter for those materials were analyzed. Regression equations for pickup velocity (v$_{p}$) and saltation velocity (v$_{s}$) were proposed by the data transformation and the multi-regression analysis as follows : (equation omitted) where, 0< s < 1, 0< λ$_{i}$< 3, 35 < D/d$_{p}$ < 350, 1000 $_{p}$/p$_{a}$ < 2500 The range of pickup velocity of fertilizers and other agrichemicals were shown to be 10-16m/s and 9-13m/s, respectively. The saltation velocity of fertilizer and other agrichemicals were 3 m/s and 4 m/s, respectively.y.ively.y.y.

  • PDF

VORTEX SHEAR VELOCITY AND ITS EROSION IN THE SCOUR HOLE

  • Lee, Hong-Sik;Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Scour hole is formed due to the high shear stress of the jet flow at the outlet of a hydraulic structure and vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion for the design of bed protection. If the vortex erosion continues and reaches to the hydraulic structure, it causes the deformation of the structure itself. To obtain the amount of the vortex erosion, it is necessary to determine the shear velocity of the line vortex in the scour hole was derived by the theory of energy conservation and found to be related to the upstream overflow velocity. The amount of vortex erosion from the scour hole was obtained using entrainment equation for given value of shear velocity. For a design purpose, if the flow velocity at the end of an apron and the properties of bed material are given, the amount of vortex erosion was obtained.

  • PDF