• Title/Summary/Keyword: High Velocity

Search Result 5,001, Processing Time 0.037 seconds

Calibrating the stellar velocity dispersion in near-IR

  • Kang, Wol-Rang;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • The correlation between black hole mass and galaxy stellar velocity dispersion gives an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical spectra since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller, particularly with the laser-guide-star adaptive optics. However, it is crucial to test whether the stellar velocity dispersion measured from the near-IR spectra is consistent with that measured from the optical spectra. Using the TripleSpec at the Palomar 5-m Telescope, we obtained high quality spectra ranging from 1 to 2.4 micron for a sample of 35 nearby galaxies, for which dynamical black hole masses and optical stellar velocity dispersion measurements are available, in order to calibrate the stellar velocity dispersion in the near-IR. In this poster, we present the initial results based on 10 galaxies, with the stellar velocity dispersion measured in the H-band.

  • PDF

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(II) (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(II))

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.427-435
    • /
    • 1997
  • Conditional sampling techniques are utilized to investigate the relation between the wall skin-friction and stream wise velocity fluctuations in a turbulent boundary layer. Conditionally averaged results using a peak detection and the VITA (variable-interval time-averaging) technique show that a high skin friction is associated with high frequency components of the wall skin-friction fluctuations. The conditionally averaged wall skin-friction fluctuations obtained by using the VITA technique have a positively-skewed characteristics compared with the conditionally averaged stream wise velocity fluctuations. It is confirmed that there exists a phase shift between the wall skin-friction and stream wise velocity fluctuations, which was also found from the long-time averaged space-time correlations. The amount of phase shift between the wall skin-friction and stream wise velocity fluctuations is the same as that from the long-time averaged space-time correlations and does not change despite the variation of the detection threshold.

The Relationship between Loading Velocity and Ground Heaving Characteristics (재하속도와 지반융기 특성의 상호관계)

  • Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to analyze lateral displacement behavior of clay layers in case of the banking in soft ground through model tests. Seven model tests varying with thickness of soft clay and loading velocity are performed to correlate between ground heaving and loading velocity. In case of low loading velocity, vertical settlement below loading plate and small ground heaving are obviously observed. In case of the high loading velocity, it is shown that both soil displacement at the end of a loading plate and surface heaving are large. In addition, the calculated displacements show good agreement with three cases of field measurements in clay with high moisture contents so that we can predict the range of heaving area and the amount of heaving.

  • PDF

Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF

Assessing the effects of mineral content and porosity on ultrasonic wave velocity

  • Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.399-406
    • /
    • 2018
  • The influences of mineral content and porosity on ultrasonic wave velocity were assessed for ten hornfelsic rocks collected from southern and western parts of the city of Hamedan, western Iran. Selected rock samples were subjected to mineralogical, physical, and index laboratory tests. The tested rocks contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite and other fine grained cryptocrystalline matrix materials. The values of dry unit weight of the rocks were high, but the values of porosity and water absorption were low. In the rocks, the values of dry unit weight are related to the presence of dense minerals such as garnet so not affected by porosity. The statistical relationships between mineral content, porosity and ultrasonic wave velocity indicated that the porosity is the most important factor influencing ultrasonic wave velocity of the studied rocks. The values of P-wave velocity of the rocks range from moderate to very high. Empirical equations, relevant to different parameters of the rocks, were proposed to determine the rocks' essential characteristics such as primary and secondary wave velocities. Quality indexes (IQ) of the studied samples were determined based on P-wave velocities of them and their composing minerals and the samples were classified as non-fissured to moderately fissured rocks. Also, all tested samples are classified as slightly fissured rocks according to the ratio of S-wave to P-wave velocities.

2-D Analysis of the Low Flow Variation Around the Bridge Pier (교각 주변의 저수류 (低水流) 흐름 변화에 대한 2차원 분석)

  • Yeon, In-Sung;Lee, Jai-Kyung;Yeon, Gyu-Bang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2009
  • The flow is changed by the structure which goes across the river. The structure with debris causes high water level and overflow. The changed flow, which caused by pier and stream characteristics like velocity and slope, was analysed by 2D model. After rainfall, the influences of increased discharge were evaluated. Velocity was simulated in the channel by SMS (Surface water Modeling System) using RMA2, and high velocity values were found in the steep and narrow reach. Highest velocity value around piers was showed in the middle of space between two piers. The increased discharge due to rainfall increases velocity and changes flow contour considerably.

Influence of Heel Insole and Visual Control on Body Sway Index with High-heeled Shoes (뒤꿈치 인솔착용과 시각통제 유무가 하이힐 착용 시 균형관련 지수에 미치는 영향)

  • Yoon, Jung-Gyu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.407-413
    • /
    • 2014
  • PURPOSE: We investigated the influence of heel insole and visual control on body sway index with high-heeled shoes. METHODS: The subjects of this study were 61 healthy students. None of the participants had any orthopedic or neurologic alterations. C90 area, C90 angle, trace length, sway average velocity were measured using a force plate by BT4. The variables were measured both with insole and without insole when wearing high-heeled shoes under the conditions of eyes open and eyes closed. The collected data were analyzed using the Kolmogorov-Smirnov test and paired t-test. RESULTS: When wearing high-heeled shoes with insole under the conditions of eyes open, trace length, C90 area, velocity were significantly more decreased than without insole (p<.01). When wearing high-heeled shoes with insole under the conditions of eyes closed, only C90 area was significantly more decreased than without insole (p<.05). When wearing high-heeled shoes with insole under the conditions of eyes open, trace length, C90 area, velocity were significantly more decreased than under the conditions of eyes closed (p<.01). CONCLUSION: The present study demonstrates that the use of high-heeled shoes with insole supported from heel to midfoot more increased static balance than without insole under the conditions of eyes open.

A Study on the Application of Non-Destructive Testing Equation for the Estimation of Compressive Strength of High Strength Concrete (고강도콘크리트의 압축강도 추정을 위한 비파괴시험식의 적용성에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Kang, Suk-Pyo;Kim, Jae-Hwan;Jang, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Recently, it is being studied on the high strength concrete in many laboratories and being applied to the construction field actually. But non-destruction testing equation that to be proposed about normal strength concrete in Japan has been using because the systematic study results for the estimation of compressive strength of high strength concrete do nit exist. So it is essential to suggest the non-destruction testing equation for the estimation of compressive strength of high strength concrete. This is an experimental study to analyze and investigate the non-destruction testing equation for the estimation of compressive strength of high strength concrete. The results are as follows; The relation between rebound number, pulse velocity and compressive strength of high strength concrete have lower coefficient than combined method of rebound number and pulse velocity. Also new non-destructive testing equation for the estimation on the compressive strength of high strength concrete was suggested in this study, and it is considered that these equations have possibility to be applied in domestic construction field.

Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag (Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석)

  • Jang, Young-Gil;Choi, Yong-Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF