• Title/Summary/Keyword: High Thermal Environment

Search Result 944, Processing Time 0.03 seconds

A Relation of Urbanization Entropy and Urban Heat Phenomenon (도시화 엔트로피와 도시 열현상과의 관계성)

  • Sangjun Kang
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.3
    • /
    • pp.3-12
    • /
    • 2023
  • The issue to be discussed is set as the relationship between urban fragmentation and urban heat phenomena. The fragmentation is recognized as a negative form that commonly occurs in the process of urbanization. The purpose of this study is to examine the relationship between urbanization entropy and heat phenomenon by looking at the five major cities in Korea. The employed methods are InVEST Urban Cooling Model and MSPA (Morphological Spatial Pattern Analysis) by using the meteological data for the July 2018. The major results are as follows; First, a low rank correlation(rho=-0.3) is found in the relation between entropy and Cooling Capacity Index (CCi). Second, a very high level of rank correlation is observed between entropy and Average Temperature(℃)(rho=0.9). The implications are that 1) a city with a large degree of sprawling development can have a negative effect on urban heat phenomena; 2) the composition of land use including dispersion and concentration in non-urbanized areas, which has the characteristics of open space, can affect the urban thermal environment. Due to the limited number of case studies, it is appropriate to understand that a possibility, not generalization, is observed between entropy and heat phenomena in urbanized areas.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.

Current Statues of Phenomics and its Application for Crop Improvement: Imaging Systems for High-throughput Screening (작물육종 효율 극대화를 위한 피노믹스(phenomics) 연구동향: 화상기술을 이용한 식물 표현형 분석을 중심으로)

  • Lee, Seong-Kon;Kwon, Tack-Ryoun;Suh, Eun-Jung;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.233-240
    • /
    • 2011
  • Food security has been a main global issue due to climate changes and growing world population expected to 9 billion by 2050. While biodiversity is becoming more highlight, breeders are confronting shortage of various genetic materials needed for new variety to tackle food shortage challenge. Though biotechnology is still under debate on potential risk to human and environment, it is considered as one of alternative tools to address food supply issue for its potential to create a number of variations in genetic resource. The new technology, phenomics, is developing to improve efficiency of crop improvement. Phenomics is concerned with the measurement of phenomes which are the physical, morphological, physiological and/or biochemical traits of organisms as they change in response to genetic mutation and environmental influences. It can be served to provide better understanding of phenotypes at whole plant. For last decades, high-throughput screening (HTS) systems have been developed to measure phenomes, rapidly and quantitatively. Imaging technology such as thermal and chlorophyll fluorescence imaging systems is an area of HTS which has been used in agriculture. In this article, we review the current statues of high-throughput screening system in phenomics and its application for crop improvement.

New Technologies for the Removal of Bacteriophages Contaminating Whey and Whey Products as Cheese by-Products: A Review (치즈 부산물인 유청과 유청 제품에 감염된 박테리오파지 제거를 위해 새롭게 개발된 기술: 총설)

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Hong-Seok;Song, Kwang-Young;Hwang, Dae-Geun;Yim, Jin-Hyuk;Kang, Il-Byung;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • In general, whey obtained from various cheese batches is being reused, so as to improve the texture and to increase the yield and the nutrient value of the various final milk-based products. In fact, re-usage of whey proteins, including whey cream, is a common and routine procedure. Unfortunately, most bacteriophages can survive heat treatments such as pasteurization. Hence, there is a high risk of an increase in the bacteriophage population during the cheese-making process. Whey samples contaminated with bacteriophages can cause serious problems in the cheese industry. In particular, the process of whey separation frequently leads to aerosol-borne bacteriophages and thus to a contaminated environment in the dairy production plant. In addition, whey proteins and whey cream reused in a cheese matrix can be infected by bacteriophages with thermal resistance. Therefore, to completely abolish the various risks of fermentation failure during re-usage of whey, a whey treatment that effectively decreases the bacteriophage population is urgently needed and indispensable. Hence, the purpose of this review is to introduce various newly developed methods and state-of-the-art technologies for removing bacteriophages from contaminated whey and whey products.

  • PDF

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Diagnosis of Conflict Problem between the Marine Environmental Conservation and Development, and Policy Implication for Marine Spatial Planning (해양환경보전과 이용·개발의 상충 분석과 해양공간계획에 대한 시사점)

  • Lee, Dae In;Tac, Dae Ho;Kim, Gui Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.227-235
    • /
    • 2016
  • This paper emphasized the necessity of the marine spatial planning (MSP) through the analysis of the major developmental projects which could make a contradiction based on the adequacy of the site selection and environmental impacts. The conflicting affairs between space utilization and management plan happen in the following ways: marine renewable energy development, sand mining, reclamation, construction of golf course in coastal area, thermal effluent and waste heat, erosion causing port development. The conflict of stakeholder continues caused by the accumulated environmental impact. For the reasons mentioned above, we found two things. First, it is necessary to comprehend the fact of developmental planning and MSP. Second, it is still unsatisfactory to connect the relevance of laws related to the spatial planning. For the reinforcement of marine environmental policy management, it is necessary to consolidate the property of site selection and assessment of developmental scale. Especially, while the strategic environmental assessment is in progress based on site selection and property of scale, consistent diagnosis is needed in the following concerns: the fact of the marine spatial planning, the relevance between national developmental plan and regional developmental plan, fisheries regulation, marine protected animals. For the environmentally sound and sustainable development (ESSD), MSP should have to be prepared based in a way of top-down including coastal and EEZ plan, relevance of ocean-use zoning and sector planning, 3-D spatial information. And also integrated information system have to be prepared through high-tech marine spatial information. In conclusion, consistent and relevant strategy for MSP should have to include the whole information related to the maritime affairs such as harbor, fishing port, fishing ground, coastal management, marine ecosystem generally.

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.