• 제목/요약/키워드: High Temperature Pipe Thinning

검색결과 9건 처리시간 0.02초

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility

  • Cheong, Yong-Moo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1463-1471
    • /
    • 2017
  • In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

원전 2차계통수 모사 환경에서 용접배관 감육 특성에 미치는 재료 및 유속의 영향 (Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants)

  • 김경모;정용무;이은희;이종연;오세범;김동진
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.245-252
    • /
    • 2016
  • The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.

배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용 (Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe)

  • 홍경민;강영준;박락규;윤석범
    • 비파괴검사학회지
    • /
    • 제33권4호
    • /
    • pp.361-367
    • /
    • 2013
  • 원자력 발전소의 많은 배관들은 고온, 고압 환경에서 사용되고 있으며, 부식에 의한 감육 손상이 빈번하게 발생하고 있다. 이러한 배관의 감육 손상은 원전 설비가 노후화됨에 따라 점차 증가할 것으로 예상된다. 따라서, 배관 부식에 의한 원전 설비의 사고를 예방하기 위해 배관부의 감육 손상 및 부식 결함을 비파괴적인 방법으로 평가할 필요가 있다. 특히, 원자력 발전소의 배관에서 발생하는 감육 손상을 실시간으로 평가하기 위한 레이저 초음파 기술은 기존의 접촉식 방법이 가지는 한계를 넘어 접근이 어려운 부위에서도 측정이 가능하다. 본 연구에서는 비파괴, 비접촉식 평가를 위해 레이저를 이용한 광학적 방법을 적용하였다. 펄스 레이저로 초음파를 발생시키고 레이저 간섭계를 이용하여 초음파 신호를 획득하였으며, 먼저 감육 손상이 없는 배관에서의 초음파 신호를 검출하여 배관 내에서의 종파 속도를 측정하였다. 그리고, 배관의 두께대비 20, 30, 40, 50%의 인위적인 감육 배관을 제작하여 종파 속도를 측정하였다. 측정된 종파 속도를 이용하여 감육 배관의 두께를 계산할 수 있고, 감육 손상 부분(내부결함 깊이)의 정량적 평가도 가능하였다.

내압을 받는 내/외부 국부 감육 곡관의 파손거동 (Damage Behavior of Elbow Pipe with Inner or Outer Local Wall Thinning under Internal Pressure)

  • 김수영;남기우
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.66-73
    • /
    • 2014
  • This study was considered to occur the local wall thinning at elbow which is flowing the steam and high-pressure water of high-temperature. The angle of elbow is ${\Theta}=45^{\circ}$ and $67.545^{\circ}$. The damage behaviors of inner or outer wall thinning elbow under internal pressure were calculated by FEA(finite element analysis). We compared the simulated results by FEA with experimental data. The FEA results are as follows: In the FEA results of three types of wall thinning ratio, the circumferential and longitudinal stresses show the similar values regardless of the angle of elbow, respectively. The circumferential strain was greater at elbow of small angle, but the longitudinal strain was nearly same. The FEM stress of outer wall thinning elbow was slightly higher than that of the inner wall thinning elbow, and strain was also slightly higher. In the experiments, the circumferential strain was increased with the increase in the internal pressure, and increased rapidly on about 0.2% of strain. The longitudinal strain was small. The strain at break was much smaller than 0.2%. In the relation between pressure and eroded ratio, the criteria that can be used safely under operating pressure and design pressure were obtained. The results of FEA were in relatively good agreement with those of the experiment.

The Feasibility Study on a High-Temperature Application of the Magnetostrictive Transducer Employing a Thin Fe-Co Alloy Patch

  • Heo, Tae-Hoon;Park, Jae-Ha;Ahn, Bong-Young;Cho, Seung-Hyun
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.278-286
    • /
    • 2011
  • The on-line monitoring for the wall thinning in secondary system has been considered one of main issues for the safety of nuclear power plants. To establish the on-line monitoring technique for the pipe wall thinning, the development of the ultrasonic transducer working in high-temperature is very important. In this investigation, the magnetostrictive transducer is concerned for high temperature condition up to $300^{\circ}C$. The magnetostrictive transducer has many advantages such as high working temperature, durability, cost-effectiveness, and shear waves, most of all. A thin Fe-Co alloy patch whose Curie temperature is over $900^{\circ}C$ was employed as a ferromagnetic material for magnetostriction. Wave transduction experiments in various temperature were carried out and the effect of bias magnets was considered together with the dry coupling performance of the transducer. From experimental results, consequently, it was found that the magnetostrictive transducer works stable even in high temperature up to $300^{\circ}C$ and can be a promising method for the on-line monitoring of the wall thinning in nuclear power plants.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

원전 배관의 반복 측정 데이터에 대한 신뢰도 분석 방법 (Reliability Analysis Method for Repeated UT Measurement Data in Nuclear Power Plants)

  • 윤훈;황경모
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.142-148
    • /
    • 2013
  • Safety is a major concern in Nuclear Power Plants (NPPs). Piping systems in NPPs are very complex and composed of many components such as tees, elbows, expanders and straight pipes. The high pressure and high temperature water flows inside piping components. As high speed water flows inside piping, the pipe wall thinning occurs in various reasons such as FAC (Flow Accelerated Corrosion), LDIE (Liquid Droplet Impingement Erosion) and Flashing. To inspect the wall thinning phenomenon and protect the piping from damages, piping components are checked by UT measurement in every overhaul. During every overhaul, approximately 200~300 components (40,000~60,000 UT data) are examined in NPPs. There are some methods from EPRI for evaluating wear rate of components. However, only few studies have been conducted to find out the raw data reliability for the wear rate evaluation. Securing the reliable raw data is the key factor for a reasonable evaluation. This paper suggests the reliability analysis method for the repeatedly measured data for wear rate evaluation.

적외선열화상 카메라를 이용한 원전 소구경 감육배관의 결함 검출 (Application Defects Detection in the Small-Bore Pipe Using Infrared Thermography Technique)

  • 윤경원;김동률;정현철;홍동표;김경석
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.34-39
    • /
    • 2013
  • 선행 연구에서 적외선열화상기법을 이용하여 원전 배관의 감육 결함을 측정하기 위하여, 4 inch 배관에 인공결함을 가공하여 이에 대한 결함 검출을 도출하였다. 본 논문에서는 선행연구에서 도출된 조건을 이용하여 원전 소구경 배관의 결함 검출 조건에 관한 연구를 수행하였다. 결함의 가공은 감육 길이, 원주방향 각도, 감육 깊이를 변화시켜서 결함 조건을 가공하였다. 사용된 장비는 IR camera와 1 kW용량의 halogen lamp 2개를 사용하였으며, halogen lamp와 대상 배관과의 거리를 1 m, 1.5 m, 2 m 순으로 변화시켜 실험을 수행하였다. 실험 결과의 분석을 위하여 온도분포데이터를 확보하고, 이를 분석하여 결함 길이를 측정하였다. 4 inch 배관의 인공결함은 2 m에서 측정 결과의 신뢰도가 높았으나, 소구경 배관은 1.5 m에서 결함이 명확하게 검출되었다.