• Title/Summary/Keyword: High Pressure Hydrogen Storage System

Search Result 33, Processing Time 0.029 seconds

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Development of WT-FC Hybrid System for Off-Grid (오프그리드용 풍력-연료전지 하이브리드 시스템 개발)

  • Choi, Jong-Pil;Kim, Kwang-Soo;Park, Nae-Chun;Kim, Sang-Hun;Kim, Byeong-Hee;Yu, Neung-Su
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.60-67
    • /
    • 2007
  • This paper describes the design and integration of the wind-fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), hydrogen storage tank and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. Hydrogen may be produced and stored in high pressure tank by hydrogen gas booster system. Wind conditions are changing with time of day, season and year. So, wind power is a variable energy source. The main purpose with these WT-FC hybrid system is to store hydrogen by electrolysis of water when wind conditions are good and release the stored hydrog en to supply the fuelcell when wind is low.

  • PDF

Evaluation of Hydrogenation Properties on Ti-Nb-Cr Alloys by Single-Roll Melt Spinning (단롤주조법에 의한 Ti-Nb-Cr 합금의 제조와 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.433-439
    • /
    • 2009
  • Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. In order to solve the problem, the activation of a wide range of hysteresis of hydriding/dehydriding and without degradation of hydrogen capacity due to the hydriding/dehydriding cycle have to be improved in order to be aplied. Ti-Cr alloys have a high capacity about 0.8 wt.% in an ambient atmosphere. When the Ti-Cr alloys are added to Nb and Ta elements, they formed a laves phase in the alloy system. The Nb element was expected to make easy diffuse hydrogen in the Ti-Cr storage alloy, which was a catalytic element. In this study, the Ti-Nb-Cr ternary alloy was prepared by melt spinning. As-received specimens were characterized using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy) with EDX (Energy Dispersive X-ray) and TG/DSC (Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI (Pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423 K.

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites (Mg2NiHx-5wt% CaO 복합재료의 수소화 속도)

  • SHIN, HYO-WON;HWANG, JUNE-HYEON;KIM, EUN-A;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

The International Code Trend of High Pressure Hydrogen Cylinder and Establishing Domestic Code for the Hydrogen Fuel Cell Vehicle (수소연료전지차량 고압수소용기의 국제기준 동향 및 국내기준 개발방향)

  • Kim, Chang Jong;Lee, Seung Hoon;Kim, Young Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.2-225.2
    • /
    • 2010
  • 전 세계는 온실 가스의 방출을 줄이기 위하여 기존의 화석연료를 대체할 수 있는 에너지를 찾기 위해 연구개발에 박차를 가하고 있다. 이러한 계속적인 연구에서, 전 세계의 국가들은 태양열, 풍력, 지열 및 수소에너지와 같이 화석연료를 대체할 다양한 가스를 조사해왔다. 대체에너지 중 수소 연료는 실제로 배출가스가 없기 때문에 가장 유망한 대안이라고 할 수 있다. 연료전지자동차용 연료로 수소를 사용하기 위해서는 저장합금, 액체 및 압축 상태로 저장할 수 있다. 이 중 세계 대부분의 자동차 메이커 들은 수소를 압축하는 방식을 채택하고 있으며, 주행거리를 확보하기 위하여 고압상태로 수소가스를 저장하는 방식을 사용한다. 수소연료전지 자동차용으로 고압의 수소를 저장할 수 있고, 자동차에 탑재할 수 있도록 가벼운 용기의 개발이 진행되고 있다. 이 중 Type3와 Type4 형태의 용기가 시범적으로 적용되고 있으며, 이러한 용기의 안전성을 확보하기 위한 기준들이 국 내외에서 개발되고 있다. 현재 국제기준 중 UN ECE의 WG.29에서 선진국들을 중심으로 수소연료전지 자동차용 용기의 안전성 평가를 위한 기준을 개발하고 있다. 본 연구에서는 ISO. 15869의 기술기준에 대한 안전성 분석과 미국의 SAE J2579의 기술 보고서에서 제시한 새로운 개념의 안전성 평가 기법을 기준으로 제정되고 있는 UN ECE WG.29의 draft초안을 비교하고, 향후 수소연료전지 자동차용 용기를 위한 국내기준의 방향을 제시하고자 한다.

  • PDF

A Study on Design of Type IV Hydrogen Pressure Vessels with Filament Winding Method (필라멘트 와인딩 공법을 적용한 타입 IV 수소 압력용기 설계 연구)

  • Sungjin Ahn;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.127-132
    • /
    • 2023
  • In this study, designing of a Type 4 pressure vessel using the filament winding method was conducted. In order to prevent leakage in consideration of the design of the hydrogen storage tank, a liner was designed by applying high-density polyethylene (HDPE), and the composite structure was designed by stacking carbon/epoxy in the hoop and helical directions. As a theoretical approach, the angle of the helical fiber and fiber thickness of each hoop and helix were designed. The safety of the design was verified using the commercial software ANSYS.

Technical Trends of Hydrogen Manufacture, Storage and Transportation System for Fuel Cell Vehicle (연료전지자동차용 수소제조와 저장·운반기술동향)

  • Kil, Sang-Cheol;Hwang, Young-Gil
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2016
  • The earth has been warming due to $CO_2$ gas emissions from fossil fuel cars and a ship. So the hydrogen fuel cell vehicle(FCV) using hydrogen as a fossil fuel alternative energy is in the spotlight. Hyundai Motor Company of Korea and a car companies of the US, Japan, Germany is developing a FCV a competitive. Obtained hydrogen as a by-product of the coke plant, oil refineries, chemical plants of steel mill, coal is reacted with steam at high temperatures, methane gas, manufacture of high purity hydrogen Methane Steam Reforming and hydrogen detachable reforming method using the Pressure Swing Adsorption or Membrane Reforming technical or decomposition of water to produce electricity. Hydrogen is the electronic industry, metal and chemical industries, which are used as rocket fuel, etc. are used in factories, hospitals, home of the fuel Ene.Farm system or FCV. And a method of storing hydrogen is to store liquid hydrogen and a method for compressing normal hydrogen to the hydrogen container, by storing the latest hydride or Organic chemical hydride method is used to carry the hydrogen station. Korea is currently 13 hydrogen stations in place and in operation, plans to install a further 43 places.

Fuel cell system for SUAV using chemical hydride - I. Lightweight hydrogen generation and control system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - I. 경량 수소 발생 및 제어 장치)

  • Hong, Ji-Seok;Jung, Won-Chul;Kim, Hyeon-Jin;Lee, Min-Jae;Jeong, Dae-Seong;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • A compact hydrogen generation device of fuel cell system using chemical hydride storage technique was designed to fit the propulsion device requirement of a small unmanned aerial vehicle(SUAV). For high efficient, compact, and lightweight hydrogen generation control device, the Co-B catalyst hydrogen conversion rate by $NaBH_4$ aqueous solution flux is measured so that the proper amount of Co-B catalyst for maximum hydrogen generation of 100W stack was proposed. A compact hydrogen generation device is controlled by pump's on/off using its own internal pressure and consumes fuel in high efficiency through a dead-end type fuel cell. The fuel cell system has stable operation for a planed flight profile. The system operates up to maximum 7 hours and at least 4 hours for tough flight profiles.