• Title/Summary/Keyword: High Polymer

Search Result 3,726, Processing Time 0.045 seconds

Strength Properties of High-Fluidity Polymer-Modified Paste (고유동 폴리머 시멘트 페이스트의 강도 특성)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.925-928
    • /
    • 2006
  • The effects of polymer-binder ratio, antifoamer content and shrinkage-reducing agent content on the air content and strengths of high-fluidity polymer-modified pastes are examined. As a result, the air content of the polymer-modified pastes tends to decrease with increasing polymer-binder ratio and antifoamer content. Irrespective of the antifoamer content, the flexural and tensile strengths of the high-fluidity polymer-modified pastes tends to increase with increasing polymer-binder ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the polymer-modified pastes decreases with increasing polymer-binder ratio and shrinkage-reducing agent content.

  • PDF

Quinone-Diamine Adduct as a High Performance Resin for Coatings (퀴논-디아민 부가물계 고성능 도료용 수지)

  • Lee, Chi-Giu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • We have prepared diamine-benzoquinone polymer which was known to excellent water proofing, high adhesion strength and good anti-corrosive effect, and have investigate with the possibility of application as a high performance resin for coatings. First of all, the reactivity of diamine-benzoquinone has been described an example of polymer reaction with research trend. The polymer reaction was divided into the polymerization with several diamine-benzoquinone and urethane group. The synthetic resin was shown a high solubility. In case of polymer containing urethane, water absorption content, water proofing and mechanical properties were controlled with the content, water proofing and mechanical properties were controlled with the content of quinone. It was shown that an use of choice was a possible result for various coatings. Diamine-quinone polymer can be used as a new resin for coatings. In addition, the polymer containing a functional group was shown a useful applicability as a high performance resin.

Self-Healing Asphalt Prepared by using Ionic Epoxy Resin

  • Lee, Young-Jik;Seo, Jun-Young;Kim, Seo-Yeon;Lee, Seung-Hyun;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Anionic epoxy compound was synthesized and added to asphalt aiming to prepare self-healing asphalt. Epoxy-modified asphalt showed excellent modification effect and healing effect as well. The results revealed that with 5% addition of polymer the tensile strength, impact strength and complex shear modulus of the polymer-modified asphalt increased by 65%. 64% and 35%, respectively. It seems that high interaction occurs between polymer and asphalt matrix. Self-healing efficiency of the polymer-modified asphalt based on tensile strength showed 100%, comparing to 79% of straight asphalt. In impact experiment the polymer-modified asphalt showed 99% of healing efficiency, comparing to 77% of straight asphalt. In rheological experiment the polymer-modified asphalt showed 103% of healing efficiency, comparing to 72% of straight asphalt. It appears that the ionic bonding existing in epoxy polymers contributed to high values of self-healing efficiency. The polymer which has high intermolecular force fills the crack of the asphalt, pulling the opponent side each other, and so the original properties were restored.

Formation of High-Performance Polymer Walls in a Liquid Crystal Cell by Phase Separation of Fluorinated Polymer Mixture

  • Baek, Jong-In;Shin, Jong-Ba;Oh, Min-Cheol;Kim, Jae-Chang;Yoon, Tae-Boon
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • In this paper, we report the fabrication of high quality polymer walls by using a monomer containing fluorine (F-monomer). Polymer walls with no phase retardation were fabricated by using photo-polymerization induced anisotropic phase separation of the mixture composed of liquid crystal (LC) and F-monomer. Thanks to the immiscibility of fluoride, we could form high quality polymer walls with no light leakage. We measured electro-optic characteristics of a twisted-nematic (TN) LC cell whose polymer walls were fabricated by using the F-monomer, and the measurements were compared with that fabricated by using the monomer without fluorine.

Flocculation Behavior and properties of Montmorillonites Mixed with Organic Polymer Solutions (유기폴리머 용액에 혼합한 몬모릴로나이트의 응집 거동 및 특징)

  • 황진영
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.307-315
    • /
    • 1999
  • Four organic polymers were mixed with mothmorillonite. Two cationic polymers a hi로 molecular weight polyacrylamide (494C) and a low molecular weight polymer (587C).Two anionic polymers include a high molecular weight polymer (aerotil). Each clay supension series were allowed to stand for 24 hours and were centrifuged, and the clay plugs were washed and dried. The dried samples investigated by XRD, IR and CEC measurement. The suspended clay containing anionic polymers was not flocculated at any concentratuons of polymer. But the suspendions containing two cationic polymers were rapidly flocculated at almost all concentrations. the d(001) spacings of Na-montmorillonite after being with cationic polymer 587C show about 15$\AA$ suggesting the polymers may have entered the interlayer spaces. The polymer 494C-treated sample produced double peaks of about 12 and 15$\AA$ in XRD. It indicates that the high molecular weight polymer. And cationic polymer 494C may be adsorbed mainy on the outside surface of clay, and some polymers may peretrate into olny interlayers in the margin of montmorillonite particles because of its high molecular weught. CEC of polumer 587-treated sample was reduecd mmarkedly suggesting polymer blocks CEC sites. The d(001) spacings of Ca-montmorillonite after being treated with cationic polymers show about 15$\AA$ suggesting that the interlayer spaces have not been expanded. In the experiment using a dilute Ca-bearing solution, the suspended caly containinf anionic polymers was flocculated. The results indicate that the flocculation behavior of montmorillonite-polymer supension depends on not only polymer properties such as concentration, electric charge and molecular weight but also compositions of solvent.

  • PDF

New Solid Polymer Electrolyte for Lithium Secondary Batteries

  • Park, Jung-Ki;Lee, Yong-Min;Lee, Jun-Young;Ryou, Myeong-Hyeon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.67-68
    • /
    • 2006
  • Solid polymer electrolyte is very important in the applications to high energy density lithium batteries of high safety. In this work, solid polymer electrolytes based on PE non-woven matrix, hybrid salt, and anion receptor were successfully prepared. They could provide high ion conduction phase with maintaining mechanical strength. They also showed high electrochemical stability and lithium ion transference number. This new type of solid polymer electrolyte is expected to be a good candidate for rechargeable solid state lithium secondary batteries.

  • PDF

Durability of High-fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 고유동 폴리머 시멘트 모르타르의 내구성)

  • Joo Myung-Ki;Lee Youn-Su;Youn Do-Yong;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.703-708
    • /
    • 2005
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As the result, the setting time of the polymer-modified mortars using redispersible polymer powder tends to be delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption, chloride ion penetration depth and carbonation depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Development of High-Performance Lining Material for Fume Pipe (고성능 흄관 라이닝 재료 개발)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.391-394
    • /
    • 2003
  • Effects of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural, compressive, tensile and adhesion in tension strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and is inclined to increase with increasing polymer-binder ratio. In particular, the polymer-modified mortars with slag content of 40% provide about 20% higher tensile strength than unmodified mortars. Such high strength development is attributed to the high tensile strength of polymer and the improved bond between cement hydrates and aggregates because of the addition of polymer.

  • PDF

Synthesis of a New Cathode Redox Polymer for High Performance in Biofuel Cells

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2803-2808
    • /
    • 2014
  • High potential and fast electron transfer of a cathode mediator are significant factors for improving the performance of biofuel cells. This paper reports the first synthesis of a cathode redox polymer that is a coordination complex of poly (acrylic acid-vinylpyridine-acryl amide) (PAA-PVP-PAA) and [Os(4,4'-dicarboxylic acid-2,2'-bipyridine)$_2Cl_2]^{/+}$ ($E^{\circ}=0.48V$ versus Ag/AgCl). Bilirubin oxidase can be easily incorporated into this polymer matrix, which carried out the four-electron oxygen under typical physiological conditions (pH 7.2, 0.14 M NaCl, and $37^{\circ}C$). This new polymer showed an approximately 0.1 V higher redox potential than existing cathode mediators such as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. In addition, we suggest increasing the polymer solubility with two hydrophilic groups present in the polymer skeleton to further improve fast electron transfer within the active sites of the enzyme. The maximum power density achieved was 60% higher than that of PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. Furthermore, high current density and electrode stability were confirmed for this osmium polymer, which makes it a promising candidate for high-efficiency biofuel cells.

A study on the mechanical properties of the polymer cement mortar in a high temperature region (고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구)

  • Yoon, Ung-Gi;Seo, Dong-Goo;Kwon, Young-Jin;Kim, Hyung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF