Formation of High-Performance Polymer Walls in a Liquid Crystal Cell by Phase Separation of Fluorinated Polymer Mixture

  • Baek, Jong-In (Department of Electronics Engineering, Pusan National University) ;
  • Shin, Jong-Ba (Department of Electronics Engineering, Pusan National University) ;
  • Oh, Min-Cheol (Department of Electronics Engineering, Pusan National University) ;
  • Kim, Jae-Chang (Department of Electronics Engineering, Pusan National University) ;
  • Yoon, Tae-Boon (Department of Electronics Engineering, Pusan National University)
  • Published : 2006.03.24

Abstract

In this paper, we report the fabrication of high quality polymer walls by using a monomer containing fluorine (F-monomer). Polymer walls with no phase retardation were fabricated by using photo-polymerization induced anisotropic phase separation of the mixture composed of liquid crystal (LC) and F-monomer. Thanks to the immiscibility of fluoride, we could form high quality polymer walls with no light leakage. We measured electro-optic characteristics of a twisted-nematic (TN) LC cell whose polymer walls were fabricated by using the F-monomer, and the measurements were compared with that fabricated by using the monomer without fluorine.

Keywords

References

  1. F. Matsumoto, T. Nagata, T. Miysbori, H. Tanaka, and S. Tsushima, Society for Information Display Symposium '03 Digest (1993), p. 965
  2. J. L. West, m. Rouberol, J. J. Francl, J. W. Doane, and M. Pfeiffer, Proc. Asia Display '95 (1995), p. 55
  3. R. Buerkle, R. klette, E. Lueder, R. Bunz, and T. Kallfass, Society for Information Display Symposium '97 Digest (1997), p. 109
  4. H.-R. Kim, S.-J. Jang, J.-W. Jung, M. Jin, and J.-H. Kim, J. Inform. Display 6 (1), p. 1 (2005)
  5. V. Vorflusev and S. Kumar, Sci. 283, p. 1903 (1999) https://doi.org/10.1126/science.283.5409.1903
  6. Y. Kim, J. Francl, B. Taheri, and J. L. West, Appl. Phys. Lett. 72, p. 2253 (1998) https://doi.org/10.1063/1.121333
  7. H. sato, H. fujikake, Y. Iino, m. Kawakita, and H. Kikuchi, Jpn. J. Appl. Phys. 41, p. 5302 (2002) https://doi.org/10.1143/JJAP.41.5302
  8. J.-W. Jung, S.-J. Jang, Y.-J. lee, H.-R. Kim, M. Y. Jin, and J.-H. Kim, J. Inform. Display 6 (2), p. 1 (2005)
  9. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, Appl. Phys. Lett. 48, p. 269 (1986) https://doi.org/10.1063/1.96577
  10. Y. K. fung, D.-K. Yang, Y. Sun, L. C. Chien, S. Zumer, and J. W. Doane, Liq. Cryst. 19, p. 797 (1995) https://doi.org/10.1080/02678299508031102
  11. H. Kikuchi, H. Yamamoto, H. Sato. m. Kawakita, K. Takizawa, and H. Fuhikake, Jpn. J. Appl. Phys. 44, p. 981 (2005) https://doi.org/10.1143/JJAP.44.981
  12. N. Yamada, S. Kohzaki, F. Funada, and K. Awane, Society for Information Display Symposium '97 Digest (1997), p. 575
  13. S. H. lee, S. H . Park, m.-H. Lee, S. T. Oh, and G.-D. Lee, Appl. Phys. Lett. 86, 031108 (2005) https://doi.org/10.1063/1.1849842
  14. C. D. Hoke and P. J. Bos, J. Appl. Phys. 88, p. 2302 (2000) https://doi.org/10.1063/1.1287772
  15. M.-C. Oh, C. Zhang, H.-J. lee, W. H. Steier, and H. R. Fetterman, IEEE Photon. Technol. Lett. 14, p. 1121 (2002) https://doi.org/10.1109/LPT.2002.1021989
  16. M.-C. Oh, S.-H. Cho, Y.-O. Noh, H.-J. Lee, J.-J. Joo, and M.-H. Lee, IEEE Photon. Technol. Lett. 17. p. 1891 (2005)
  17. C. H. Gooch and H. A. Tarry, J. Phys. D 8, p. 1575 (1975) https://doi.org/10.1088/0022-3727/8/13/020