• Title/Summary/Keyword: High PAE

Search Result 213, Processing Time 0.024 seconds

PHEMT MMIC Broad-Band Power Amplifier for LMDS (Ka 대역 광대역 MMIC 전력증폭기)

  • 백경식;김영기;맹성재;이진희;박철순
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.177-180
    • /
    • 1999
  • A two-stage monolithic microwave integrated circuits (MMIC) broad-band power amplifier with AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been developed for the up-link and down-link applications for local multipoint distribution systems (LMDS) in the frequency range of 24~28㎓. The amplifier has a small signal gain of 18.6㏈ at 24.5㎓ and 16.7㏈ at 27.1㎓. It achieved output powers of 19.8㏈m with PAE of 19.8% at 24.5㎓ and 18.8㏈m at 27.1㎓.

  • PDF

Design of A Low Voltage High Efficiency Class-E Amplifier for Wireless LAN (무선 LAN용 저전압 고효율 E급 증폭기 설계)

  • Park, Chan-Hyuck;Koo, Kyung-Heon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.87-90
    • /
    • 2005
  • High-efficiency switched-mode circuits such as the class-E amplifier are well-known in the MHz frequency range. The class-E amplifier is a type of switching mode amplifier offering very high efficiency approaching 100%. In this paper of the class-E amplifier by using pHEMT device, the design has been done theoretically and experimentally, with simulation by using the harmonic balance method using circuit simulator. The amplifier using microstrip circuit and the pHEMT demonstrate 66% power-added- efficiency (PAE) at 2.4GHz with 17.6dBm of output power.

  • PDF

Extracellular Polysaccharide Produced by a New Methylotrophic Isolate (새로운 메탄올 자화세균이 생산하는 세포외 다당류)

  • Lee, Ho J.;Kim, Si W.;Kim, Young M.
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.212-218
    • /
    • 1998
  • An obligately methylotrophic bacterium which produces extracellular polysaccharide (EPS) was isolated through methanol-enrichment culture technique. The isolate was aerobic, nonmotile, and gram negative rod and exibited catalase, but no oxidase, activity. Plasmid, carotenoid, and poly-${\beta}$-hydroxybutyric acid were not found. The guanine plus cytosine content of DNA was 52-56%. The isolate was found to grow only on methanol and monomethylamine. Growth was optimal ($t_d=2.4h$) at $35^{\circ}C$ and pH 6.5 in a mineral medium containing 0.5% (v/v) methanol, 25 mM phosphate, and 0.212% ammonium sulfate. Methanol was assimilated through the ribulose monophosphate pathway. Maximun amount of EPS was produced in cells growing at the mid-stationary growth phase at $30^{\circ}C$ in a mineral medium (PH 6.5) containing 1.0% (v/v) methanol in the CIN ratio of 54.7. Thin-layer chromatographic and high performance liquid chromatographic analysis revealed that the EPS was composed of glucose and galactose. EPS which was not treated with ethanol (Pbe) exhibited stable viscosity under various concentrations of salts and temperatures hut showed high viscosity at low pH. EPS precipitated with ethanol (Pae) was found to be more stable in viscosity than the Pbe at various salt concentrations, temperatures, and pH. The Pae also exhibited higher viscosity than the Pbe and xanthan gum. Scanning electron microscopy revealed that the lyophilized Pbe and Pae have a multi-layered structure and a structure of thick fibers, respectively.

  • PDF

A 2.4-GHz Dual-Mode CMOS Power Amplifier with a Bypass Structure Using Three-Port Transformer to Improve Efficiency (3-포드 변압기를 이용한 바이패스 구조를 적용하여 효율이 개선된 이중 모드 2.4-GHz CMOS 전력 증폭기)

  • Jang, Joseph;Yoo, Jinho;Lee, Milim;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.719-725
    • /
    • 2019
  • We propose a 2.4-GHz CMOS power amplifier (PA) with a bypass structure to improve the power-added efficiency (PAE) in the low-power region. The primary winding of the output transformer is split into two parts. One of the primary windings is connected to the output of the power stage for high-power mode. The other primary winding is connected to the output of the driver stage for low-power mode. Operation of the high power mode is similar to conventional PAs. On the other hand, the output power of the driver stage becomes the output power of the overall PA in the low power mode. Owing to a turning-off of the power stage, the power consumption is decreased in low-power mode. We designed the CMOS PA using a 180-nm RFCMOS process. The measured maximum output power is 27.78 dBm with a PAE of 20.5%. At a measured output power of 16 dBm, the PAE is improved from 2.5% to 12.7%.

Efficiency Improvement of Power Amplifier Using a Digitally-Controlled Dynamic Bias Switching for LTE Base Station (Digitally-Controlled Dynamic Bias Switching을 이용한 LTE 기지국용 전력증폭기의 효율 개선)

  • Seo, Mincheol;Lee, Sung Jun;Park, Bonghyuk;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.795-801
    • /
    • 2014
  • This paper presents an efficiency enhancement for the high power amplifier using DDBS(Digitally-controlled Dynamic Bias Switching) method which dynamically provides the power amplifier with two bias voltage levels according to the input envelope signal. It is quite easy to adjust the control signal by using a digital processing. The fabricated DDBS PA was evaluated using an 64 QAM FDD LTE signal, which has a center frequency of 2.6 GHz, a bandwidth of 10 MHz and a PAPR of 9.5 dB. The DDBS increases the power amplifier's PAE(Power-Added Efficiency) from 40.9 % to 48 %, at an average output power level of 43 dBm.

CMOS Power Amplifier Using Mode Changeable Autotransformer (모드변환 가능한 단권변압기를 이용한 CMOS 전력증폭기)

  • Ryu, Hyunsik;Nam, Ilku;Lee, Dong-Ho;Lee, Ockgoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.59-65
    • /
    • 2014
  • In this paper, in order to improve efficiency performance of power amplifiers, a mode changeable autotransformer is proposed. Efficiency performance at the low-power mode can be improved by adopting the mode changeable autotransformer. A dual-mode autotransfomrer CMOS power amplifier using a standard 0.18-${\mu}m$ CMOS process is designed in this work. Number of turns in a primary winding is re-configurated according to mode change between the high-power mode and the low-power mode. Thus, the efficiency performance of the power amplifier at each mode is optimized. EM and total circuit simulation results verify that low-power mode power added efficiency(PAE) at 24dBm output power is improved from 10.4% to 26.1% using the proposed multi-mode operation.

A Design of Power Amplifier with Broadband and High Linearity for 4G Application in 0.11 μm CMOS Process (0.11 μm CMOS 공정을 이용한 4세대 이동통신용 광대역 고 선형 전력증폭기의 설계 및 구현)

  • Kim, Ki-Hyun;Ko, Jae-Yong;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.50-59
    • /
    • 2016
  • This work shows that the design and test results of a power amplifier(PA) with broadband and high linearity for 4G applications in $0.11{\mu}m$ CMOS process. A 1:2-transformer is designed for load impedance matching of PA and a inter-stage matching is implemented for a linearity. A designed PA achieves more than 27.3 dBm of linear output power and 26.1 % of power-added efficiency(PAE) under an adjacent channel leakage ratio(ACLR) of -30 dBc for a LTE 16-QAM 10 MHz signal with a carrier frequency range of 1.8 to 2.3 GHz.

Design of High Efficiency CMOS Class E Power Amplifier for Bluetooth Applications

  • Chae Seung Hwan;Choi Young Shig;Choi Hyuk Hwan;Kim Sung Woo;Kwon Tae Ha
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.499-502
    • /
    • 2004
  • A two-stage Class E power amplifier operated at 2.44GHz is designed in 0.25-$\mu$m CMOS process for Class-l Bluetooth application. The power amplifier employs c1ass-E topology to exploit its soft-switching property for high efficiency. A preamplifter with common-mode configuration is used to drive the output-stage of Class-E type. The amplifier delivers 20-dBm output power with 70$\%$ PAE (power -added-efficiency) at 2-V supply voltage.

  • PDF

Torsion Pendulum for Monitoring Curing Behavior of an Epoxy Resin under Hydrostatic Pressure

  • Lee, Jong Keun;Pae, K.D.
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.395-402
    • /
    • 1993
  • A newly designed torsion pendulum operating at high pressures and various temperatures has been constructed. The High Pressure Torsion Pendulum(HPTP) is capable of containing gaseous pressure to 690MPa(100, 000psi) and operating at temperatures from-$100^{\circ}C$ to $300^{\circ}C$. A glass fiber braid is installed between two sample holders to accommodateliquid samples. The HPTP was fully automated and computerized using an IBM-AT personal computer to control initiation of oscillation, collect digitized data, and calculate the shear and loss moduli from damped curves, The curing process of an epoxyamine(DGEBA-DDS) system under various pressures up to 124 MPa(18, 000 psi) at $150^{\circ}C$has been successfully carried out and some results are presented.

  • PDF

Particle Acceleration by High Power (> TW) Femtosecond Lasers in Plasmas (고출력 펨토초 레이저와 플라즈마를 이용한 입자가속)

  • Suk, H.;Hafz, N.;Kim, C.B.;Kim, G.H.;Kim, J.U.;V. Kulagin;Lee, H.J.;Kim, J.C.;Ko, I.S.;Hahn, S.J.;Pae, G.H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.62-62
    • /
    • 2003
  • Charged particles can be accelerated to relativistic high energies by high power (> terawatt) laser beams. We have a research project on laser and plasma-based advanced accelerators in Center for Advanced Accelerators at Korea Electrotechnology Research Institute (KERI), in which the 2 TW (1.4 J/700 fs) Ti:sapphire/Nd:glass hybrid laser system and a He plasma will be used for particle acceleration experiments. In this presentation, we introduce the ongoing research activities and the planned experiments at KERI.

  • PDF