DOI QR코드

DOI QR Code

CMOS Power Amplifier Using Mode Changeable Autotransformer

모드변환 가능한 단권변압기를 이용한 CMOS 전력증폭기

  • 류현식 (부산대학교 전자전기 컴퓨터공학부) ;
  • 남일구 (부산대학교 전자전기 컴퓨터공학부) ;
  • 이동호 (한밭대학교 정보통신공학과) ;
  • 이옥구 (부산대학교 전자전기 컴퓨터공학부)
  • Received : 2014.01.29
  • Accepted : 2014.04.03
  • Published : 2014.04.25

Abstract

In this paper, in order to improve efficiency performance of power amplifiers, a mode changeable autotransformer is proposed. Efficiency performance at the low-power mode can be improved by adopting the mode changeable autotransformer. A dual-mode autotransfomrer CMOS power amplifier using a standard 0.18-${\mu}m$ CMOS process is designed in this work. Number of turns in a primary winding is re-configurated according to mode change between the high-power mode and the low-power mode. Thus, the efficiency performance of the power amplifier at each mode is optimized. EM and total circuit simulation results verify that low-power mode power added efficiency(PAE) at 24dBm output power is improved from 10.4% to 26.1% using the proposed multi-mode operation.

본 논문에서는 전력증폭기의 효율을 증가시키기 위해서 모드변환 가능한 단권변압기를 제안한다. 모드변환 가능한 단권변압기를 통해 전력증폭기의 저 전력 모드 동작 시 효율을 개선할 수 있다. 이 논문에서는 0.18-${\mu}m$ CMOS 표준 공정을 이용하여 듀얼모드 단권변압기를 이용한 CMOS 전력증폭기를 설계하였다. 고 전력 모드와 저 전력 모드에서 단권변압기의 1차 권선의 권선수를 조절하여 전력증폭기의 동작을 최적화하였다. EM 시뮬레이션 및 전체 회로 시뮬레이션 결과 제안된 멀티모드 CMOS 전력증폭기의 출력전력이 24dBm일 때 전력부가효율(PAE)이 10.4%에서 멀티모드 동작으로 26.1% 로 상승하여 전력증폭기의 성능 개선되었다.

Keywords

References

  1. A. M. Niknejad, D. Chowdhury, and J. Chen, "Design of CMOS power amplifiers", IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1784-1796, June 2012. https://doi.org/10.1109/TMTT.2012.2193898
  2. Hyoungjun Kim, Jinhee Joo, and Chulhun Seo,"Research on PAE of CMOS Class-E Power Amplifier For Multiple Antenna System", IEIE vol 45, no 1, pp 1-6, Dec. 2008.
  3. S. Kim, J. Lee, J. Shin, and B. Kim, "CDMS handset power amplifier with a switched output matching circuit for low/high power mode operations", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1523-1526, June 2004.
  4. J.-S. Fu and A. Mortazawi, "Improved power amplifier efficiency and linearity using a dynamically controlled tunable matching network", IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3239-3244, Sep. 2008. https://doi.org/10.1109/TMTT.2008.2007094
  5. G. Liu, P. Haldi, T.-J. K. Liu, and A. M. Niknejad, "Fully integrated CMOS power amplifier with efficiency enhancement at power backoff", IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 600-609, Mar. 2008. https://doi.org/10.1109/JSSC.2007.916585
  6. K. H. An, D. H. Lee, O. Lee, H. Kim, J. Han, W. Kim, C.-H. Lee, H. Kim, and J. Laskar, "A 2.4GHz fully integrated linear CMOS power amplifier with discrete power control", IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 479-481, July 2009. https://doi.org/10.1109/LMWC.2009.2022141
  7. O. Lee, K. H. An, J. Cho, and J. Cha "A switchless reconfigurable transformer CMOS power amplifier", IEICE Electronics Express, vol. 9, no. 9, pp. 855-860, May 2012 https://doi.org/10.1587/elex.9.855
  8. C. Alexander and M. Sadiku, Fundamentals of Electric Circuits, McGraw-Hill, 2009, ch. 13.
  9. V. A. Solomko and P. Weger, "A fully integrated 3.3-3.8-GHz power amplifier with autotranformer balun", IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2160-2172, Sep. 2009. https://doi.org/10.1109/TMTT.2009.2027083
  10. H.-Y. Liao, M.-W. Pan, and H.-K. Chiou, "Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmissionline transformer", Electronics Letters, vol. 46, no. 22, Oct. 2010.
  11. B. Koo, T. Joo, Y. Na, and S. Hong,"A fully integrated dual-mode CMOS power amplifier for WCDMA applications", IEEE J. Solid-State Circuits, pp 82 - 84, Feb. 2012.