• Title/Summary/Keyword: High Fluidity

Search Result 462, Processing Time 0.029 seconds

Feasibility Analysis of Wasted Limestone Powder as a Viscosity Reducing Material for Cement Based Materials (시멘트 계열 재료의 점도 저하용 혼화재료로서 폐석회석 미분말의 사용 가능성 분석)

  • Lee, Hyang-Seon;Jeon, Jong-Un;Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • The aim of the research is providing a fundamental idea of reducing viscosity of cement based materials by replacing powder based material. With developing concrete technology, high performance concrete with high solid volume fraction has been used widely. Under the conditions of the high solid volume fraction due to the low w/c and replacement of SCMs, decreased fluidity is one of the critical problem, and thus plasticizer has been used to improve fluidity of the mixture. However, in rheological aspect, the fluidity of cement based materials can be defined with yield stress and viscosity, and using plasticizer only decreases yield stress without least controlling on viscosity. Therefore, based on the idea of Krieger-Dougherty model, a feasibility of wasted limestone powder from cement manufacturing process was used to decrease the viscosity of the mixture by replacing cement powder. According to a series of experiment, by replacing wasted limestone powder solely, there was a possibility of reducing viscosity was observed. Thus, in this research scope, it is considered to contribute on providing a fundamental idea of reducing viscosity with powder replacement and it is expected to contribute on further research using various conditions of replacing powders for reducing viscosity of cementitious materials.

Properties of Mixing Proportions with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축 강도수준별 배합특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Jung, Woo Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.163-169
    • /
    • 2009
  • The research performed a test concerning the fluidity and strength of concrete manufactured by combining lime stone power, fly ash, and blast furnace slag into two and three component systems, aiming at evaluating rheological and dynamic properties of concrete by manufacturing High Flowing Self-Compacting according to the strength changes of three levels. As a result of the research, for High Flowing Self-Compacting of 30 MPa, the combination of lime stone power 20% and fly ash 30% for securing quality and strength and adjusting viscosity satisfied the required performance. For High Flowing Self-Compacting of 50 MPa, the combination of blast furnace slag 10% and fly ash 20% satisfied the fluidity and strength of the requirement performance. Also, for 70 MPa that has many power contents, the combination of blast furnace slag 20% and fly ash 10% for the increase of fluidity and the reduction of viscosity satisfied the required performance. It is judged that fly ash in all combinations can be used to secure viscosity and reduce concrete amount. In addition, it is judged that for High Flowing Self-Compacting according to the levels of compressive strength the combination of three component system including fly ash is more appropriate than the combination of two component system.

A Study on Strenth of Top-Down concrete on placing ways of kind (타설법에 따른 역타콘크리트의 강도에 관한 연구)

  • 이영도;윤상혁;정근호;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.37-40
    • /
    • 2002
  • The purpose of this study is promote perfect of construction and progress of packing ability through comparison and analysis with quality, as placing ways and placing direction are changed. Kinds of concrete are general, high fluidity, and high Performance concrete. Classified with concrete as placing ways - direct ways, sheath way - and placing directing - flange direction, web direction - is analyzed section and strength of hardened concrete. The results of this study is belows the more fluid of concrete, the more useful to top-down method.

  • PDF

The Properties of High Performance Concrete Using Fly Ash and Expansive Additives (플라이애쉬 및 팽창재를 이용한 고성능 콘크리트의 특성)

  • 전병채;홍상희;송명신;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.15-18
    • /
    • 1998
  • In this paper, the properties of high performance concrete with fly ash and expansive additives are investigated. According to the experimental results, when 10% of fly ash and 5% of expansive additives are mixed in concrete mixture, the improvement of the quality in the side of the fluidity, strength and the prevent of the crack caused by drying-shringkage can be accomplished.

  • PDF

The Properties of High Performance Concrete Using Silica Fume and Expansive Additives (실리카 흄 및 팽창재를 이용한 고성능 콘크리트의 특성)

  • 송명신;홍상희;전병채;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.19-22
    • /
    • 1998
  • This study is investigate the properties of high performance concrete at W/B of 35%, used with silica fume and CSA expansive additives, which is used to improve the concrete qualities and prevent the drying-shrinkage. According to the results, the fluidity of concrete shows a decline with the increase of replacement percentage of silica fume and proportions of expansive additives. A higher strength is obtained at 5% of replacement percentage of silica fume, while the compensation achieves in drying-shrinkage of concrete at 5% of expansive additives.

  • PDF

The Study on Strngth and Placing Method that Used of Mock up Model (모델 시험체에 있어서 타설방법과 강도에 대한 실험적 연구)

  • 임형일;정근호;박선길;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.841-846
    • /
    • 2000
  • The purpose of this study is promote perfect of construction and progress of packing ability through comparison and analysis with quality, as placing ways and placing direction are changed. Kinds of concrete are general, high fluidity, and high performance concrete. Classified with concrete as placing ways - direct ways, sheath way - and placing directing - flange direction, web direction - is analyzed section and strength of hardened concrete. The results of this study is belows the more fluid of concrete, the more useful to top-down method.

  • PDF

Influences of Construction Conditions on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용하는 바닥 모르타르의 특성에 미치는 시공요인의 영향)

  • 표대수;정성철;송명신;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.925-928
    • /
    • 2000
  • In this paper, physical properties of cement mortar for floor using expansion agent are discussed varied with mixing time and curing temperature, delivery time and content of added water for preventing fluidity loss. According to experimental results, slump loss shows high with elapse of time And as curing temperature goes up, it also show high when curing temperature goes up and time lag between mixing and casting increases. As curing temperature goes down, drying shrinkage shows to be decreased. But it shows decline tendency with increase of added water content.

Study on Consistency Curve of Cement Mortar according to Superplasticizer type (고성능 AE 감수제 종류에 따른 시멘트 모르타르의 컨시스턴시 곡선 검토)

  • Lee, Gun-Young;Lee, Gun-Cheol;Choi, Jung-Gu;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.179-180
    • /
    • 2015
  • Recently, admixture manufacturers have improved the performance of admixtures to solve problems caused by high viscosity of high performance admixtures, and accordingly, it is expected to affect fluidity of concrete using admixtures. Therefore, in this research, how each kind of HAE affects consistency curve of cement mortar was examined.

  • PDF

Fluidity Performance Evaluation of Low Viscosity Typed Superplasticizer for Cement-Based Materials Incorporating Supplementary Cementitious Materials (혼화재료를 치환한 시멘트 계열 재료에 대한 저점도형 고성능 감수제의 유동 성능 평가)

  • Son, Bae-Geun;Lee, Hyang-Seon;Lee, You-Jeong;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • The aim of the research is to provide a fundamental data of low viscosity typed superplasticizer (SP) on cement-based materials incorporating various supplementary cementitious materials (SCMs). As a relatively new product, low-viscosity typed SP has introduced for high performance concrete with high viscosity due to its high solid volume fraction with various SCMs. However, there are not enough research or reports on the performance of the low viscosity typed SP with cement-based materials incorporting SCMs. hence, in this research, for cement paste and mortar, fluidity and rheological properties were evaluated when the mixtures contained various SCMs such as fly ash, blast furnace slag, and silica fume. From the experiment conducted, it was checked that the low viscosity typed superplasticizer decreased the plastic viscosity of the mixture as well as the yield stress. From the results of this research, it is expected to contribute on introduction of new type SP for high performance concrete or high-viscous cementitious materials.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.