• Title/Summary/Keyword: High Energy Electron Beam

Search Result 282, Processing Time 0.031 seconds

Space Charge Analysis in Polymer Irradiated by Quasi-Monoenergetic Electron Beam (전자빔 조사에 의한 폴리머 내의 공간 전하 분석)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.62-66
    • /
    • 2008
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

A Study on ZnSe/GaAs Heterojunction Solar Cells Grown by MBE (MBE법으로 제작한 ZnSe/GaAs 이종접합 태양전지에 관한 연구)

  • Lee, Hong-Chan;Lee, Sang-Tae;Oh, Jin-Suck;Kim, Yoon-Sik;Chang, Ji-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.289-290
    • /
    • 2006
  • We report a study of Zn(S)Se/GaAs heterojunction solar cells grown by molecular beam epitaxy (MBE). Zn(S)Se/GaAs heterostructures prepared under different conditions were characterized in-situ by reflection high-energy electron diffraction (RHEED). Structural and electrical properties were investigated with double crystal X-ray diffraction and current-voltage characteristics, respectively. The fabricated $n-ZnS_{0.07}Se_{0.93}/p-GaAs$ solar cell (SC #2) exhibited open circuit voltage($V_{oc}$) of 0.37 V, short circuit current($I_{sc}$) of $1.7{\times}10^{-2}$ mA, fill factor of 0.62 and conversion efficiency of 7.8 % under 38.5 $mW/cm^2$ illumination.

  • PDF

InN 박막을 이용한 저결함 GaN 박막 성장연구

  • Kim, Yong-Deok;Park, Byeong-Gwon;Lee, Sang-Tae;Kim, Mun-Deok;Kim, Song-Gang;O, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.485-485
    • /
    • 2013
  • Plasma-assisted molecular beam epitaxy법으로 자가 형성되는 InN 박막을 활용하여 GaN 박막의 결함밀도를 감소시키는 성장 구조 조건에 대하여 연구하였다. Sapphire 기판 위에 저온에서 GaN 핵층을 3 nm 두께로 성장하고, 그 위에 InN 박막을 성장 한 후, 고온에서 GaN을 성장하였다. InN박막의 성장 온도는 $450^{\circ}C$이고, 성장 시간을 30초에서 1분 30초까지 각각 달리 하였다. 실험결과 InN 층이 삽입된 GaN 박막이 상대적으로 고른 표면이 형성되는 과정을 reflection high energy electron diffraction로 관측하였고, atomic force microscope를 측정하여 표면 거칠기의 개선을 확인하였다. InN 성장시간 변화에 따른 결정학적, 광학적 특성 변화를 x-ray diffraction, photoluminescence 이용하여 조사하였고, 본 연구를 통해 InN박막을 활용한 양질의 GaN 박막 성장 가능성을 확인하였다.

  • PDF

Epitaxial Growth of Rare-earth Ion Doped $CaF_2$ layers by MBE

  • Ko, J.N.;Chen, Y.;Fukuda, T.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.3-7
    • /
    • 1998
  • The rare-earth ions (R3+, R=Nd, Er) doped CaF2 layers have been grown on CaF2(111) substrate by molecular beam epitaxy. The epitaxial relationship and the crystallinity of CaF2:R3+ layers depending on the concentration of R3+ were studied by reflection high-energy electron diffraction (RHEED). In aspect of application as buffer layer in semiconductor-related hybrid structure, the lattice displacement between CaF2:R3+ layers and CaF2(111) substrate was investigated by X-ray rocking curve analysis.

  • PDF

Space Charge Analysis in Polymers Irradiated by Electron Beam (E-빔 조사에 의한 폴리머의 공간전하 해석)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.309-310
    • /
    • 2007
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

A Research Trend on Space Charge Analysis in Polymer Irradiated by Electron Beam (전자빔 조사에 의한 중합체 내의 공간 전하 분석 연구 동향)

  • Kim, Byung-Woo;Lee, Hyung-Chul;Ahn, Jong-Hyun;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1990-1991
    • /
    • 2007
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Trend of Metal 3D Printing by Welding (용접에 의한 Metal 3D Printing의 동향)

  • Byun, Jae-Gyu;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • Metal AM(Additive Manufacturing) has been steadily developed and that is classified into two method. PBF(Powder Bed Fusion) deposited in the bed by the laser or electron beam as a heat source of the powder material and DED(Directed Energy Deposition) deposited by varied heat source of powder and solid filler material. In the developed countries has been applying high productivity process of solid filler metal based DED method to the aerospace and defense sectors. The price of the powder material is quite expensive compared to the solid filler metal. A study on DED method that is based on a solid filler metal is increasing significantly although was low accuracy and degree of freedom.

Fabrication of Backscatter Electron Cones for Radiation Therapy (산란전자선을 이용한 강내측방조사기구의 제작과 특성)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2001
  • Purpose : Irradiation cones by using backscatter electrons are made for the treatment of superficial small lesions of skin, oral cavity, and rectum where a significant dose gradient and maximum surface dose is desired. Methods and Materials : Backscatter electrons are produced from the primary electron beams from the linear accelerators. The design consists of a cylindrical cone that has a thick circular plate of high atomic number medium (Pb or Cu) attached to the distal end, and the plate can be adjusted the reflected angle. Primary electrons strike the metal plate perpendicularly and produce backscatter electrons that reflect through the lateral hole for treatment. Using film and a parallel plate ion chamber, backscatter electron dose characteristics are measured. Results : The depth dose characteristic of the backscatter electron is very similar to that of the hard x-ray beam that is commonly used for the intracavitary and superficial lesions. The basckscatter electron energy is nearly constant and effectively about 1.5 MeV from the clinical megavoltage beams. The backscatter electron dose rate of $35\~85\;cGy/min$ could be achieved from modern accelerators without any modification. and the depth in water of $50\%$ depth dose from backscatter electron located at 6mm for $45^{\circ}$ angled lead scatter. The beam flatness is dependent on the slit size and the depth of treatment, but is satisfactory to treat small lesions. Conclusions : The measured data for backscatter electron energy, depth dose flatness dose rate and absolute dose indicates that the backscatter electrons are suitable for clinical use.

  • PDF

POLARITY AND ION RECOMBINATION CORRECTION FACTORS OF A THIMBLE TYPE IONIZATION CHAMBER WITH DEPTH IN WATER IN THE MEGAVOLTAGE BEAMS

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.43-48
    • /
    • 2009
  • When the PDD (percentage depth dose) in the megavoltage beams is measured in the water phantom, the polarity and ion recombination effects of ionization chambers with depth in water are not usually taken into consideration. We try to investigate if those variations with depth should be taken into consideration or could be ignored for the thimble type semiflex ionization chamber (PTW $31010^{TM}$, SN 1551). According to the recommendation of IAEA TRS-398, the 4 representative depths of $d_s$, $d_{max}$, $d_{90}$ and $d_{50}$ were used for the electron beams. For the photon beams, the 4 depths were arbitrarily chosen for the photon beams, which were $d_s$, $d_{max}$, $d_{10}$ and $d_{20}$. For the high energy photon beam both polarity and ion recombination factors of the chamber with depth in water gives the good agreements within the maximum $\pm$0.2%, while the $C_{polS}$ with depth came within the maximum $\pm$ 0.4% and the $C_{IRS}$ within the maximum $\pm$0.6% in every electron beam used. This study shows that PDI (percentage depth ionization) could be a good approximation to PDD for the chamber used.

GaAs Epitaxial Layer Growth by Molecuar Beam Epitaxy (MBE에 이한 GaAs 에피택셜층 성장)

  • 정학기;이재진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.34-40
    • /
    • 1985
  • Characteristics of GaAE epilayers grown on (100) CaAs wa(tors by molecular beam epitaxy (MBE) under various single crystal growing conditions were investigated. In fabrica-ting GaAs, epilayer by MBE, the most important factors are a substrate temperature(ts) and a flux density ratio (As/Ga). In this experiment, the substrate temperature was varied in the range of 48$0^{\circ}C$ to $650^{\circ}C$ and As and Ga cell temperatures were varied in the range of 218$^{\circ}C$ to 256$^{\circ}C$ and 876$^{\circ}C$ to 98$0^{\circ}C$, respectively. At the substrate temperature of 54$0^{\circ}C$, As cell temperature of 23$0^{\circ}C$, and Ga cell temperature of 91$0^{\circ}C$, the As/Ga ratio was 5"10, the surface morphology was most smooth . Investigation of As-stabilized surface by RHEED and of depth profile by SIM5 showed that As is less stable than Ga. Also, X-ray diffraction measurement revealed that single crystals of (400) and (200) were formed at the both sub-strate temperatures of 52$0^{\circ}C$ and 54$0^{\circ}C$.TEX>.

  • PDF