• Title/Summary/Keyword: High Concentration Dust

Search Result 289, Processing Time 0.03 seconds

Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles

  • Shin, Han-Jae;Cho, Hyun Gi;Park, Chang Kyun;Park, Ki Hong;Lim, Heung Bin
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.305-313
    • /
    • 2017
  • Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synthetic organic combustion [SOC] ash, and yellow sand dust [YSD]) and investigated their physicochemical properties and in vitro biological toxicity. DEPs were almost entirely composed of ultrafine particles (UFPs), while the NOC, SOC, and YSD particles were a mixture of UFPs and FPs. The main elements in the DEPs, NOC ash, SOC ash, and YSD were black carbon, silicon, black carbon, and silicon, respectively. DEPs exhibited dose-dependent mutagenicity even at a low dose in Salmonella typhimurium TA 98 and 100 strains in an Ames test for genotoxicity. However, NOC, SOC, and YSD particles did not show any mutagenicity at high doses. The neutral red uptake assay to test cell viability revealed that DEPs showed dose-dependent potent cytotoxicity even at a low concentration. The toxicity of DEPs was relatively higher than that of NOC, SOC, and YSD particles. Therefore, these results indicate that among the four FPs, DEPs showed the highest in vitro biological toxicity. Additional comprehensive research studies such as chemical analysis and in vivo acute and chronic inhalation toxicity tests are necessary to determine and clarify the effects of this air contaminant on human health.

Investigating the potential exposure risk to indium compounds of target manufacturing workers through an analysis of biological specimens (생물학적 노출평가를 통한 타겟 제조업 근로자의 공정별 인듐 노출위험성 조사)

  • Won, Yong Lim;Choi, Yoon Jung;Choi, Sungyeul;Kim, Eun-A
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.263-271
    • /
    • 2014
  • Objectives: Along with the several cases of pulmonary disorders caused by exposure to indium that have been reported in Japan, China, and the United States, cases of Korean workers involved in processes that require handling of indium compounds with potential risk of exposure to indium compounds have also been reported. We performed biological monitoring for workers in various target manufacturing processes of indium, indium oxide, and indium tin oxide(ITO)/indium zinc oxide(IZO) in domestic factories. Materials: As biological exposure indices, we measured serum concentrations of indium using inductively coupled plasma mass spectrometry, and Krebs von den Lungen 6(KL-6) and surfactant protein D(SP-D) using enzyme-linked immunosorbent assays. We classified the ITO/IZO target manufacturing process into powdering, mixing, molding, sintering, polishing, bonding, and finishing. Results: The powdering process workers showed the highest serum indium level. The mixing and polishing process workers also showed high serum indium levels. In the powdering process, the mean indium serum concentration in the workers exceeded $3{\mu}g/L$, the reference value in Japan. Of the powdering, mixing, and polishing process workers, 83.3%, 50.0%, and 24.5%, respectively, had values exceeding the reference value in Japan. We suppose that the reason of the higher prevalence of high indium concentrations in powder processing workers was that most of the particles in the powdering process were respirable dust smaller than $10{\mu}m$. The mean KL-6 and SP-D concentrations were high in the powdering, mixing, and polishing process workers. Therefore, the workers in these processes who were at greater risk of exposure to indium powder were those who had higher serum levels of indium, as well as KL-6 and SP-D. We observed significant differences in serum indium, KL-6, and SP-D levels between the process groups. Conclusions: Five among the seven reported cases of "indium lung" in Japan involved polishing process workers. Polishing process workers in Korea also had high serum levels of indium, KL-6, and SP-D. The outcomes of this study can be used as essential bases for establishing biological monitoring measures for workers handling indium compounds, and for developing health-care guidelines and special medical surveillance in Korea.

On the Observation of Sandstorms and Associated Episodes of Airborne Dustfalls in the East Asian Region in 2005 (2005년 동아시아 지역에서 발생한 모래폭풍과 먼지침전(황사)의 관측)

  • Kim, Hak-Sung;Chung, Yong-Seung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.196-209
    • /
    • 2009
  • Occurrences of sandstorms in the deserts and loess of Mongolia and northern China and associated dustfall episodes in the Korean Peninsula were monitored during the period January through December, 2005. False colour images were made by directly receiving the NOAA Advanced Very High Resolution Radiometer (AVHRR) data, and the distribution and transport of sandstorms were analyzed. The ground concentrations for PM10, PM2.5 and visibility of the dustfall episodes (PM10 concentration over $190{\mu}g\;m^{-3}$) were analyzed at Cheongwon, located midway in South Korea, and in the leeward direction of the place of origin of the sandstorms. Variations in the concentrations of $O_3,\;NO_2$, CO and $SO_2$ were also compared with dust concentrations in the dustfall episodes. Fewer occurrences of strong sandstorms in the place of origin were observed in 2005, due largely to the accumulation of snow and mild fluctuations of high and low pressure systems in the place of origin, thereby accounting for a low frequency of dustfall episodes in Korea, compared with those during the period 1997-2005. A total of 7 dustfall episodes were monitored in Korea in 2005 that lasted 11 days. In summer, sandstorms occurred less frequently in the source region in 2005 due to high humidity and milder winds, thereby causing no dustfall episodes in Korea. In case the sandstorms occurring at the place of source head directly to Korea without passing through large cities and industrial areas of China, the PM2.5 concentrations were measured at 20% or lower than the PM10 concentrations. However, when the sandstorms headed to Korea via the industrial areas of eastern China, where they pick up anthropogenic air pollutants, the PM2.5 concentrations were at least 25% higher of the PM10 concentrations. On the other hand, over 5 cases were observed and analyzed in 2005 where the PM10 concentrations of sand dust originating from the deserts were measured at $190{\mu}g\;m^{-3}$ or lower, falling short of the level of a dustfall episode.

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

The Behaviour of Dust Concentrations During Sand Storm in Seoul Area (황사기간 중 PM2.5, PM10, TSP 농도 특성에 관한 연구)

  • Kim, Min-Young;Kim, Kwang-Rae;Lee, Min-Hwan;Cho, Seog-Ju
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • The characteristics of particles were evaluated through the measurement data of PM$_{2.5}$, PM$_{10}$ and TSP instruments located in air quality monitoring stations installed and operated by Seoul Metropolitan city. The data of particulate mass on the filter was collected bv a high volume air sampler during the sand storm period. The number of days of sand storm in Seoul showed a different pattern from 1990 to November 2002, We can see a trend of increased occurrence and duration of sand storms. The ratio of PM$_{10}$ to TSP was shown as 52.9% and 59.4% during the sand storm period in 2000 and 2001. respectively. It was indicated that the particles larger than 10${\mu}$m increased by approximately 10% in sand storm periods compared to no sand storm period. While PM$_{10}$ size fraction reached 71.4% in 2002, the contribution of sand storm to total particulate concentration was estimated to be 11.9% for PM$_{2.5}$, 23.1% for PM$_{10}$, 19% for TSP in 2002, respectively and sand storms highly correlated with annual total particulate concentration.

Human Risk Assessment of Soil Contaminated with Heavy Metal by Waste Reclaimed in Railway Maintenance Site (철도정비부지 내 매립된 폐기물에 의해 중금속으로 오염된 토양의 인체위해성 평가)

  • Braatz, Hatsue Minato;Jung, Minjung;Moon, Seheum;Park, Jinkyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.63-74
    • /
    • 2019
  • This study carried out a human risk assessment of Cu, Pb, Zn and Ni contained in soil contaminated by improperly buried heavy metal wastes in railway sites. The purpose of the human risk assessment is to derive the need for soil remediation and factors that should be considered during soil remediation. Risk assessment was performed in accordance with the Environment Ministry's Risk Assessment Guidelines. The results of the human risk assessment of contaminated heavy metal soil contaminated by improperly buried waste in the railway site were presented after the process of determining exposure concentration, calculating exposure, and determining carcinogenic hazards. The heavy metal content of soil is 621.3 Cu mg/kg, 2,824.5 Pb mg/kg, 1,559.1 Zn mg/kg and 45 Ni mg/kg, which is the exposure concentration of the target contaminant. The results of human exposure according to exposure pathways were high in the order of soil outdoor dust >soil ingestion >soil contact, and Pb >Zn >Cu >Ni were higher in order of contaminant. The carcinogenic and noncarcinogenic risks of soil contaminated with heavy metal waste were higher than the allowable carcinogenic risks (TCR> $10^{-6}$) and the risk index (Hi < 1.0) suggested by USEPA. Therefore, the site needs to be remediated.

Characteristics of Fine Particulate Matter (PM2.5) in the Atmosphere of Saemangum Reclaimed Land Area (새만금간척지 지역 대기 중 초미세먼지 (PM2.5) 오염 특성 평가)

  • Song, Ji-Han;Kim, Jeong-Soo;Hong, Sung-Chang;Kim, Jin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • To understand the distribution characteristics of PM2.5 concentration in the Saemangeum Reclamation Area and nearby areas, three points of the background area, the occurrence area, and the affected area were selected and samples were collected for each season. The chemical composition was determined. As a result of analyzing the chemical composition contained in PM2.5, NO3- (7.2 ㎍/m3), SO42- (4.3 ㎍/m3), NH4+ (4.3 ㎍/m3), OC (2.5 ㎍/m3), Si (1.3 ㎍/m3) m3) and EC (0.5 ㎍/m3) seemed to be the main components, and NO3-, SO42-, NH4+, which are components that form secondary particles, occupied a large proportion. The composition ratio of PM2.5 was investigated in the order of ion component (56.8%) > Unknown (27.4%) > carbon component (11.8%) > heavy metal component (4.0%). During the PM2.5 high concentration case days, the ionic component accounted for 90.7% during atmospheric stagnation cases, whereas the chemical composition ratio was in the order of ionic component (51.7%) > heavy metal component (41.5%) > carbon component (6.8%) during yellow dust cases. It was found that the characteristic of PM2.5 in the Saemangeum reclaimed land and surrounding areas is mainly influenced by outside (domestic and overseas) throughout the year. Ion components accounted for the largest portion of PM2.5 components in this area, but there were few sources of SOx and NOx emission in the Seamangeum area, which are precursors for secondary particle formation. Therefore, it is judged that most of these are generated and influenced as a secondary reaction in the atmosphere from the outside.

Identifying Yellow Sand from the Ocean Color Sensor SeaWIFS Measurements (해색 센서 SeaWiFS 관측을 이용한 황사 판독)

  • 손병주;황석규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.366-375
    • /
    • 1998
  • Optical characteristics of the yellow sand and their influences on the ocean color remote sensing has been studied using ocean color sensor SeaWiFS measurements. Two cases of April 18 and April 25, 1998, representing yellow sand and background aerosol, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. Optical thickness of yellow sand arrived over the East Asian sea waters in April 18 indicates that there are two groups loaded with relatively homogeneous yellow sand, i.e.: heavy yellow sand area with optical thickness peak around 0.8 and mild area with about 0.4, which are consistent with ground observations. The movement of the yellow sand area obtained from surface weather maps and backward trajectory analysis manifest the notion that the weak yellow sand area was originated from the outer region of the dust storm. It is also noted that high optical thickness associated with the yellow sand is significantly different from what we may observe from background aerosol, which is about 0.2. These characteristics allow us to determine the yellow sand area with an aid of atmospheric correction parameter. Results indicate that the yellow sand area can be determined by applying the features revealed in scattergrams of atmospheric correction parameter and optical thickness.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.