References
- Farina, F., Sancini, G., Mantecca, P., Gallinotti, D., Camatini, M. and Palestini, P. (2011) The acute toxic effects of particulate matter in mouse lung are related to size and season of collection. Toxicol. Lett., 202, 209-217. https://doi.org/10.1016/j.toxlet.2011.01.031
- Sancini, G., Farina, F., Battaglia, C., Cifola, I., Mangano, E., Mantecca, P., Camatini, M. and Palestini, P. (2014) Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM 2.5). PLoS ONE, 9, e109685. https://doi.org/10.1371/journal.pone.0109685
- Jassal, M.S. (2015) Pediatric asthma and ambient pollutant levels in industrializing nations. Int. Health, 7, 7-15. https://doi.org/10.1093/inthealth/ihu081
- Adams, K., Greenbaum, D.S., Shaikh, R., van Erp, A.M. and Russel, A.G. (2015) Particulate matter components, sources, and health: Systematic approaches to testing effects. J. Air Waste Manag. Assoc., 65, 544-558. https://doi.org/10.1080/10962247.2014.1001884
- Luanpitpong, S., Chen, M., Knuckles, T., Wen, S., Luo, J., Ellis, E., Hendryx, M. and Rojanasakul, Y. (2014) Appalachian mountaintop mining particulate matter induces neoplastic transformation of human bronchial epithelial cells and promotes tumor formation. Environ. Sci. Technol., 48, 12912-12919. https://doi.org/10.1021/es504263u
- Gong, J., Zhu, T., Kipen, H., Rich, D.Q., Huang, W., Lin, W.T., Hu, M. and Zhang, J.J. (2015) Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers of exposure to traffic-emitted pollutants. Environ. Int., 85, 104-110. https://doi.org/10.1016/j.envint.2015.09.003
- Dumax-Vorzet, A.F., Tate, M., Walmsley, R., Elder, R.H. and Povey, A.C. (2015) Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis, 30, 621-633. https://doi.org/10.1093/mutage/gev025
- Prange, J.A., Gaus, C., Weber, R., Papke, O. and Muller, J.F. (2003) Assessing forest fire as a potential PCDD/F source in Queensland, Australia. Environ. Sci. Technol., 37, 4325-4329. https://doi.org/10.1021/es0343454
- Simon, E., Choi, S.D. and Park, M.K. (2016) Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring. J. Hazard. Mater., 317, 632-639. https://doi.org/10.1016/j.jhazmat.2016.06.030
- Noma, Y., Yamamoto, T., Giraud, R. and Sakai, S. (2006) Behavior of PCNs, PCDDs, PCDFs, and dioxin-like PCBs in the thermal destruction of wastes containing PCNs. Chemosphere, 62, 1183-1195. https://doi.org/10.1016/j.chemosphere.2005.07.039
- Yamada, P., Hatta, T., Du, M., Wakimizu, K., Han, J., Maki, T. and Isoda, H. (2012) Inflammatory and degranulation effect of yellow sand on RBL-2H3 cells in relation to chemical and biological constituents. Ecotoxicol. Environ. Saf., 84, 9-17. https://doi.org/10.1016/j.ecoenv.2012.05.021
- Hayakawa, K. (2016) Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem. Pharm. Bull., 64, 83-94. https://doi.org/10.1248/cpb.c15-00801
- Nadal, M., Marques, M., Mari, M. and Domingo, J.L. (2015) Climate change and environmental concentrations of POPs: A review. Environ. Res., 143, 177-185. https://doi.org/10.1016/j.envres.2015.10.012
- Sagai, M., Saito, H., Ichinose, T., Kodama, M. and Mori, Y. (1993) Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic. Biol. Med., 14, 37-47. https://doi.org/10.1016/0891-5849(93)90507-Q
- Maron, D.M. and Ames, B.N. (1983) Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215 https://doi.org/10.1016/0165-1161(83)90010-9
- Borenfreund, E. and Puerner, J.A. (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett., 24, 119-124. https://doi.org/10.1016/0378-4274(85)90046-3
- Surawski, N.C., Miljevic, B., Avoko, G.A., Elbaqir, S., Stevanovic, S., Fairfull-Smith, K.E., Bottle, S.E. and Ristovski, Z.D. (2011) Physicochemical characterization of particulate emissions from a compression ignition engine: the influence of biodiesel feedstock. Environ. Sci. Technol., 45, 10337-10343. https://doi.org/10.1021/es2018797
- Faustini, A., Alessandrini, E.R., Pey, J., Perez, N., Samoli, E., Querol, X., Cadum, E., Perrino, C., Ostro, B., Ranzi, A., Sunyer, J., Stafoggia, M. and Forastiere, F. (2015) Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES project. Occup. Environ. Med., 72, 323-329. https://doi.org/10.1136/oemed-2014-102459
- Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koeniq, J.Q. and Smith, K.R. (2007) Woodsmoke health effects: a review. Inhal. Toxicol., 19, 67-106.
- Yang, H.H., Luo, S.W., Lee, K.T., Wu, J.Y., Chang, C.W. and Chu, P.F. (2016) Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method. J. Air Waste Manag. Assoc., 66, 807-814. https://doi.org/10.1080/10962247.2016.1184195
- Fujimori, T., Tanino, Y. and Takaoka, M. (2014) Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash. Environ. Sci. Technol., 48, 85-92. https://doi.org/10.1021/es403585h
- Ma, Q., Liu, Y., Liu, C., Ma, J. and He, H. (2012) A case study of Asian dust storm particles: chemical composition, reactivity to SO2 and hygroscopic properties. J. Environ. Sci. (China), 24, 62-71. https://doi.org/10.1016/S1001-0742(11)60729-8
- Noh, Y., Muller, D., Shin, S.K., Shin, D. and Kim, Y.J. (2016) Vertically-resolved profiles of mass concentrations and particle backscatte coefficients of Asian dust plumes derived from lidar observations of silicon dioxide. Chemosphere, 143, 24-31. https://doi.org/10.1016/j.chemosphere.2015.03.037
- Jalava, P.I., Raimo, O.S., Kati, N., Arto, S.P., Mikko, S.H., Jarkko, T., Anna, F., Risto, H., Jorma, J. and Maija-Riitta, H. (2010) Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles. Atmos. Environ., 44, 1691-1698. https://doi.org/10.1016/j.atmosenv.2009.12.034
- Hashimoto, A.H., Amanuma, K., Hiyoshi, K., Sugawara, Y., Goto, S., Yanagisawa, R., Takano, H., Masumura, K., Nohmi, T. and Aoki, Y. (2007) Mutations in the lungs of gpt delta transgenic mice following inhalation of diesel exhaust. Environ. Mol. Mutagen., 48, 682-693. https://doi.org/10.1002/em.20335
- Rivedal, E., Myhre, O., Sanner, T. and Eide, I. (2003) Supplemental role of the Ames mutation assay and gap junction intercellular communication in studies of possible carcinogenic compounds from diesel exhaust particles. Arch. Toxicol., 77, 533-542. https://doi.org/10.1007/s00204-003-0483-6
- Gaffney, J.S. and Nancy, A.M. (2009) The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyond. Atmos. Environ., 43, 23-36. https://doi.org/10.1016/j.atmosenv.2008.09.016
- Manzo, N.D., Slade, R., Richards, J.H., McGee, J.K., Martin, L.D. and Dye, J.A. (2010) Susceptibility of inflamed alveolar and airway epithelial cells to injury induced by diesel exhaust particles of varying organic carbon content. J. Toxicol. Environ. Health Part A, 73, 565-580. https://doi.org/10.1080/15287390903566625
Cited by
- Comparison of Mutagenic Activities of Various Ultra-Fine Particles vol.34, pp.2, 2018, https://doi.org/10.5487/TR.2018.34.2.163