• Title/Summary/Keyword: Hif-$1{\alpha}$

Search Result 158, Processing Time 0.039 seconds

Rehmannia Radix(RR) Extracts Inhibit IGF-II Induced VEGF and HIF-1 ${\alpha}$ Expressions in HaCaT Keratinocyte Cells (Rehmannia Radix의 IGF-II로 유도된 HIF-1 ${\alpha}$와 VEGF 발현 억제)

  • Park, Ung;Shin, Yong-Cheol;Ko, Seong-Gyu
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.51-62
    • /
    • 2006
  • Psoriasis is a chronic skin disease characterized by angiogenesis. It has been reported that growth factor as vascular endothelial growth factor(VEGF) and insulin like growth factor(IGF) II are overexpressed in psoriatic epidermis. To investigate the inhibitory effects of IGF-II induced VEGF and HIF-1${\alpha}$ expression by RR extracts, we performed MTS assay, western blots using HaCaT cells. RR extracts significantly reduced IGF-II induced HIF 1${\alpha}$ protein level via MAPK pathway in HaCaT cells. Also, RR extracts inhibited IGF-II induced VEGF mRNA and protein expression levels in the HaCaT keratinocytes. These results suggest that inhibition of HIF-1${\alpha}$ and VEGF expressions by RR extracts contributes to the anti angiogenic effects.

  • PDF

Relationship between the Expression of VEGF, HIF-$1{\alpha}$, E-cadherin, p53 and Stage in Papillary Thyroid Carcinoma (유두상(乳頭像) 갑상선암(甲狀腺癌)에서 VEGF, HIF-$1{\alpha}$, E-cadherin, p53의 발현(發現)과 병기(病期)의 관련성(關聯性) 연구(硏究))

  • Kim, Jong-Sam;Na, Baeg-Ju;Lee, Moo-Sik;Kim, Chul-Woung;Jeong, Gye-Rim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.335-338
    • /
    • 2009
  • 본 연구에서는 HIF-$1{\alpha}$의 과발현은 VEGF의 발현과 유의한 상관 관계가 있음을 보여 주었다. 그리고, HIF-$1{\alpha}$의 과발현과 E-cadherin의 발현 사이에도 연관성은 있었지만 통계적인 유의성은 없었다. 종양의 병기와 VEGF, HIF-$1{\alpha}$, E-cadherin, p53의 상관성을 살펴본 결과 E-cadherin에서만 유의성이 관찰되었다. 갑상샘 유두암종에서 HIF-$1{\alpha}$의 발현이 종양의 증식과 관련된 단백, 특히 맥관형성과 관련된 단백인 VEGF의 발현, p53의 축적 및 E-cadherin의 발현소실과의 관계, 그리고 병리학적 표지자와의 관련성을 조사하고, 갑상샘 유두암종 환자의 수술후 예후와의 관계를 알고자 하였다.

  • PDF

Backbone Resonance Assignment of a Proteolysis-Resistant Fragment in the Oxygen-Dependent Degradation Domain of the Hypoxia Inducible Factor 1α

  • Kim, Do-Hyoung;Lee, Si-Hyung;Chi, Seung-Wook;Nam, Ki Hoon;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.493-496
    • /
    • 2009
  • Hypoxia-inducible factor $1{\alpha}$ ($HIF1{\alpha}$) is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ responsible for the negative regulation of $HIF1{\alpha}$ in normoxia is intrinsically unfolded. Here, we carried out the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignment of a proteolysis-resistant fragment (residues 404-477) in the $HIF1{\alpha}$ ODD domain using NMR spectroscopy. About 98% (344/352) of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were unambiguously assigned. The results will be useful for further investigation of the structural and dynamic states of the $HIF1{\alpha}$ ODD domain and its interaction with binding partners.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

High Expression of HIF-1α, BNIP3 and PI3KC3: Hypoxia-Induced Autophagy Predicts Cholangiocarcinoma Survival and Metastasis

  • Thongchot, Suyanee;Yongvanit, Puangrat;Loilome, Watcharin;Seubwai, Wanchana;Phunicom, Kutcharin;Tassaneeyakul, Wichittra;Pairojkul, Chawalit;Promkotra, Wisuttiphong;Techasen, Anchalee;Namwat, Nisana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5873-5878
    • /
    • 2014
  • Hypoxia and autophagy are known to facilitate tumor progression. We here aimed to investigate the role of hypoxia-associated autophagy in cholangiocarcinoma (CCA) survival and metastasis. Immunostaining of hypoxic-responsive proteins (HIF-$1{\alpha}$ and BNIP3) and a key regulator of autophagy (PI3KC3) were examined in CCA tissues and their expression levels were compared with clinicopathological parameters. A hypoxia mimicking condition ($CoCl_2$ treatment) was also tested regarding CCA cell functions. Our results showed that HIF-$1{\alpha}$ (66%), BNIP3 (44%) and PI3KC3 (46%) showed strong staining in human CCA tissues. Positive expression of HIF-$1{\alpha}$ (p=0.033), BNIP3 (p=0.040) and PI3KC3 (p=0.037) was significantly correlated with lymph node metastasis. HIF-$1{\alpha}$ was well associated with BNIP3 (r=0.3, p<0.01) and PI3KC3 (r=0.2, p<0.01). The survival rates of patients who were positive with HIF-$1{\alpha}$ (p=0.047) or co-expressed HIF-$1{\alpha}$ and BNIP3 (p=0.032) or HIF-$1{\alpha}$ and PI3KC3 (p=0.043) were significantly greater than in the negative groups. CCA cells treated with $CoCl_2$ showed an increase in HIF-$1{\alpha}$, BNIP3, PI3KC3 and LC3-II, with increased cell migration and pFAK levels. These data suggest that hypoxia associated autophagy enhances CCA metastasis, resulting in a poor prognosis of CCA.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells (전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과)

  • Kim, Mun-Hyeon;Kim, Mi-Hyun;Park, Young-Ja;Chang, Young-Chae;Park, Yoon-Yub;Song, Hyun-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • Delphinidin is a blue-red pigment and one of the major anthocyanins in plants. It plays an important role in anti-oxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. In this study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) gene expression, an important factor involved in angiogenesis and tumor progression in human prostate cancer. Delphinidin decreased levels of epidermal growth factor (EGF)-induced VEGF mRNA expression in PC-3M cells. The expression of the EGF-induced hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and signaling transducer and activator of transcription 3 (STAT3) proteins, which are the major transcription factors for VEGF, were inhibited by delphinidin. In addition, delphinidin decreases HRE-promoter reporter gene activity, suggesting that delphinidin can suppress the transcription of HIF-$1{\alpha}$ under EGF induction, leading to a decrease in the expression of VEGF. Delphinidin specifically suppressed the phosphorylation of Akt, p70S6K, and 4EBP1, but not the phosphorylation of EGFR. Therefore, our results suggest that delphinidin may inhibit human prostate cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$, STAT3 and VEGF gene expression.

Scutellaria baicalensis ethanol extracts inhibit IGF-II-induced HIF-1 ${\alpha}$ and VEGF expressions in HaCaT cells. (황금 에탄올 추출물이 IGF-II로 유도된 $HIF-1{\alpha}$와 VEGE 발현 억제에 미치는 영향)

  • Byun, Hak-Sung;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.27-37
    • /
    • 2007
  • Background and Objective : Psoriasis is a chronic skin disease characterized by angiogenesis. It has been reported that growth factor as vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF)-II are overexpressed in psoriatic epidermis. This stydy was carried out for whether SB extracts have an anti-angiogenic effect for angiogenic factor. Method : To investigate the inhibitory effect of VEGF expression by the SB extracts, we performed MTS assay, western blots using HaCaT cells. HaCaT cells were pretreated with SB extracts for 1 hour followed by treatment with IGF-II. Result : SB extracts significantly reduced IGF-II induced HIF-1 ${\alpha}$ protein level via p53 and MAPK pathway in HaCaT cells. Also, SB extracts inhibited IGF-II induced VEGF mRNA and protein expression levels in the HaCaT keratinocytes. Conclusion : These results suggest that inhibition of HIF-1 ${\alpha}$ and VEGF expressions by SB extracts contributes to the anti-angiogenic effects.

  • PDF

Activation of Hypoxia Inducible Factor-1 Alpha by Estrogen Receptor Alpha (에스트로젠 수용체알파에 의한 Hypoxia Inducible Factor-1의 전사 활성조절)

  • Ryu, Kwang-Hee;Lee, Young-Joo
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.102-105
    • /
    • 2010
  • Our previous results showed that hypoxia inducible factor-1 (HIF-1) activated estrogen receptor (ER) in the absence of ligand. In this study, we have studied the effect ER overexpression on the activation of HIF-1. ER overexpression induced transcription activation of hypoxia response element driven luciferase and vascular endothelial growth factor. As a negative control, the effect of ER on androgen receptor response element was used. Our result indicate that the two ER$\alpha$ and HIF-1 signaling pathways shares part of the activation pathway.