DOI QR코드

DOI QR Code

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line

비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과

  • Song, Joo Han (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Jeon, Eun Joo (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Kwak, Hee Won (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Lee, Hye Min (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Cho, Sung Gun (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Kang, Hyung Koo (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Park, Sung Woon (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Lee, Jae Hee (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Lee, Byung Ook (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Jung, Jae Woo (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Jae Cheol (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Shin, Jong Wook (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Kim, Ki Jeong (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Kim, Jae-Yeol (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Park, In Won (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Byoung Whui (Department of Internal Medicine, Chung-Ang University College of Medicine)
  • 송주한 (중앙대학교 의과대학 내과학교실) ;
  • 전은주 (중앙대학교 의과대학 내과학교실) ;
  • 곽희원 (중앙대학교 의과대학 내과학교실) ;
  • 이혜민 (중앙대학교 의과대학 내과학교실) ;
  • 조성근 (중앙대학교 의과대학 내과학교실) ;
  • 강형구 (중앙대학교 의과대학 내과학교실) ;
  • 박성운 (중앙대학교 의과대학 내과학교실) ;
  • 이재희 (중앙대학교 의과대학 내과학교실) ;
  • 이병욱 (중앙대학교 의과대학 내과학교실) ;
  • 정재우 (중앙대학교 의과대학 내과학교실) ;
  • 최재철 (중앙대학교 의과대학 내과학교실) ;
  • 신종욱 (중앙대학교 의과대학 내과학교실) ;
  • 김기정 (중앙대학교 의과대학 미생물학교실) ;
  • 김재열 (중앙대학교 의과대학 내과학교실) ;
  • 박인원 (중앙대학교 의과대학 내과학교실) ;
  • 최병휘 (중앙대학교 의과대학 내과학교실)
  • Received : 2008.11.06
  • Accepted : 2009.03.06
  • Published : 2009.03.30

Abstract

Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

연구배경: 암세포는 빠른 증식 속도로 인하여 상대적인 저산소증에 노출되면서 비정상적인 종양 혈관을 형성하여 치명적인 병인을 형성한다. EGCG는 녹차의 추출물로 간세포암주 및 전립선암주에서 HIF-1$\alpha$의 발현을 억제하는 것으로 알려져 있다. 그러나 EGCG의 비혈관 증식성 효과에 대해서는 아직 정확히 규명되어 있지 않다. 본 연구에서는 EGCG가 비소세포폐암주에서 HIF-1$\alpha$ 및 VEGF의 발현에 대한 억제 가능성을 확인하여 보고자 하였다. 방 법: 비소세포폐암주인 A549를 RPMI배지에서 계대 배양하였다. 저산소 유사 상태는 Modular Incubator Chamber (MIC-101)을 이용하였고 5% 이산화탄소와 95% 질소 혼합 가스를 5분 동안 공급하여 저산소 상태를 만들었으며 세포 배양액을 채취하여 혈액가스분석기(Blood Gas Analyzer ABL725)로 세포 배양 상태를 측정하였다. 세포의 증식 상태는 MTT 방법을 실시하였다. EGCG는 0, 12.5, 25, 50,100 ${\mu}mol/L$로 농도 변화를 주어 실험을 시행하였으며 16시간 동안 저산소 상태를 만든 뒤 HIF-1$\alpha$, VEGF, $\beta$-actin mRNA에 대해 Real time PCR을 시행하였다. 결 과: 48시간과 72시간에서 저산소 상태에 놓인 A549 세포의 증식능력은 대조군에 비하여 억제되었다. EGCG 는 저산소화에 의해 유도된 HIF-1$\alpha$의 mRNA의 전사를 유의하게 억제하였다. 그러나 이러한 억제 효과는 VRGF mRNA 발현에는 미치지 못하였다. 결 론: EGCG는 HIF-1$\alpha$의 발현을 억제함으로써 비소세포암주에서의 예방적 항암요법이나 항암 치료요법 시의 주요 작용 목표로 사용될 수 있을 것으로 보인다.

Keywords

References

  1. O'Byrne KJ, Dalgleish AG, Browning MJ, Steward WP, Harris AL. The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease. Eur J Cancer 2000;36: 151-69 https://doi.org/10.1016/S0959-8049(99)00241-5
  2. Brown JM. The hypoxic cell: a target for selective cancer therapy--eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999;59:5863-70
  3. Rofstad EK, Danielsen T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 1999;80:1697-707 https://doi.org/10.1038/sj.bjc.6690586
  4. Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K. The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 2005; 65:2387-96 https://doi.org/10.1158/0008-5472.CAN-04-3039
  5. Buchler P, Reber HA, Lavey RS, Tomlinson J, Buchler MW, Friess H, et al. Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 2004;120:295-303 https://doi.org/10.1016/j.jss.2004.02.014
  6. Cangul H. Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet 2004;5:27 https://doi.org/10.1186/1471-2156-5-27
  7. Song X, Liu X, Chi W, Liu Y, Wei L, Wang X, et al. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 2006;58:776-84 https://doi.org/10.1007/s00280-006-0224-7
  8. Koukourakis MI, Giatromanolaki A, Sivridis E, Fezoulidis I. Cancer vascularization: implications in radiotherapy? Int J Radiat Oncol Biol Phys 2000;48:545-53 https://doi.org/10.1016/S0360-3016(00)00677-5
  9. Swinson DE, O'Byrne KJ. Interactions between hypoxia and epidermal growth factor receptor in non-small-cell lung cancer. Clin Lung Cancer 2006;7:250-6 https://doi.org/10.3816/CLC.2006.n.002
  10. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000;88:1474-80 https://doi.org/10.1152/jappl.2000.88.4.1474
  11. Wang T, Niki T, Goto A, Ota S, Morikawa T, Nakamura Y, et al. Hypoxia increases the motility of lung adenocarcinoma cell line A549 via activation of the epidermal growth factor receptor pathway. Cancer Sci 2007;98: 506-11 https://doi.org/10.1111/j.1349-7006.2007.00428.x
  12. Koshikawa N, Takenaga K, Tagawa M, Sakiyama S. Therapeutic efficacy of the suicide gene driven by the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Cancer Res 2000;60:2936-41
  13. Li L, Yu J, Xing L, Ma K, Zhu H, Guo H, et al. Serial hypoxia imaging with 99mTc-HL91 SPECT to predict radiotherapy response in nonsmall cell lung cancer. Am J Clin Oncol 2006;29:628-33 https://doi.org/10.1097/01.coc.0000242345.71582.e0
  14. Shin JW, Jeon EJ, Kwak HW, Song JH, Lee YW, Jeong JW, et al. Microenvironments and cellular proliferation affected by oxygen concentration in non-small cell lung cancer cell line. Tuberc Respir Dis 2007;63:242-50 https://doi.org/10.4046/trd.2007.63.3.242
  15. Kobayashi S, Conforti L, Pun RY, Millhorn DE. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor. J Physiol 1998;508:95-107 https://doi.org/10.1111/j.1469-7793.1998.095br.x
  16. Ziemer LS, Lee WM, Vinogradov SA, Sehgal C, Wilson DF. Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J Appl Physiol 2005;98:1503-10 https://doi.org/10.1152/japplphysiol.01140.2004
  17. Mairbaurl H, Wodopia R, Eckes S, Schulz S, Bartsch P. Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia. Am J Physiol 1997;273:L797-806
  18. O'Kelly I, Peers C, Kemp PJ. O2-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung. Am J Physiol 1998;275:L709-16