• 제목/요약/키워드: Hierarchical Recognition Algorithm

검색결과 52건 처리시간 0.021초

과적응 감소를 위한 주성분 분석 및 독립성분 분석을 이용한 MLLR 화자적응 알고리즘 개선 (Improvement of MLLR Speaker Adaptation Algorithm to Reduce Over-adaptation Using ICA and PCA)

  • 김지운;정재호
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.539-544
    • /
    • 2003
  • 본 논문은MLLR (Maximum Likelihood Linear Regression)를 화자 적응시 과적응 방지를 위해 트리 구조에서 HHM 파라메타의 변환을 결정하는 점유 문턱값 (occupation threshold)의 영향을 감소하는 방법에 대해 기술한다. 데이터의 특징을 잘 나타내는 주성분 분석과 독립성분 분석을 통해 모델 혼합성분의 상관관계를 줄이고 상대적으로 데이터의 분포가 적은 축을 삭제함으로써 적은 적응데이터에 의한 과적응의 영향을 감소시켰다. 점유 문턱값을 작게 설정함으로써 변환함수의 수를 증가시켰을 경우, 기존의 MLLR 알고리즘은 과적응에 의해 화자 독립 모델보다 낮은 인식률을 나타내는 반면, 제안한 MLLR알고리즘은 화자 독립 모델의 성능에 비해 평균 2%이상 인식율 향상을 나타내었다.

영상 재구성방법을 이용한 염색체 영상의 패턴 분류 (Pattern Classification of Chromosome Images using the Image Reconstruction Method)

  • 김충석;남재현;장용훈
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.839-844
    • /
    • 2003
  • 본 연구에서는 염색체의 영상패턴을 인식하고 분류하는 방법을 개선하기 위해 패턴인식의 특징정보로 사용되는 비선형적인 염색체 영상을 선형적으로 재구성하는 영상 재구성 알고리즘을 사용하여 선형화된 특징정보를 추출하여 패턴분류기인 신경회로망의 입력정보로 사용한다. 중앙축 변환방법과, 영상 재구성방법을 사용하여 임상적으로 정상인으로 판명된 20명의 염색체 영상의 특징정보를 추출하였다. 중앙축 변환방법에 의하여 추출된 특징정보의 패턴조합과 영상 재구성방법에 의하여 추출된 특징정보의 패턴조합을 구성하였으며, 10명에 대하여 추출한 특징정보를 계층적인 신경회로망(Hierarchical Multilayer Neural Network : HMNN)의 학습입력으로 사용하여 염색체를 분류하기 위한 패턴인식기를 구현하였다. 그리고 나머지 10명에 대하여 학습입력과 동일하게 조합된 패턴조합을 HMNN의 분류입력으로 사용하여 수행한 결과 약 98.26%의 우수한 인식률을 나타내는 최적화된 패턴인식기를 구현할 수 있었다.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Octree 모델에 근거한 고속 3차원 물체 인식 (Octree model based fast three-dimensional object recognition)

  • 이영재;박영태
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.84-101
    • /
    • 1997
  • Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.

  • PDF

음성신호의 실시간 피치변경에 관한 연구 (A Study on Real Time Pitch Alteration of Speech Signal)

  • 김종국;박형빈;배명진
    • 한국음향학회지
    • /
    • 제23권1호
    • /
    • pp.82-89
    • /
    • 2004
  • 고음질 합성을 하면서도 다양한 음색을 갖도록 하기 위해서는 파형부호화를 이용한 합성법에 적용할 수 있는 피치 변경법이 필요하다. 따라서 본 논문에서는 스펙트럼 왜곡률을 최소화하는 영교차 단위의 시간축 조절에 의한 피치 변경법과 피치 동기분석이 용이하고 다른 영역으로의 변환과정이 불필요한 피치시점 검출법을 제안함으로써 고음질을 유지하면서 시간영역에서만 처리됨으로써 계산량을 줄이고 스펙트럼 왜곡률을 최소화하고 위상을 그대로 보존할 수 있는 시간영역에서의 피치 변경법을 제안하였다. 결과적으로 전체 피치 변경율에 대해서는 기존의 방법에 비해서 제안한 방법의 스펙트럼 왜곡률이 0.73%개선되었고 피치 압축시에는 제안한 방법의 스펙트럼 왜곡율이 2.18%개선되었다.

K-평균 군집방법을 이요한 가중커널분류기 (Kernel Pattern Recognition using K-means Clustering Method)

  • 백장선;심정욱
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.447-455
    • /
    • 2000
  • 본 논문에서는 커널분류기에 요구되는 다량의 계산량과 자료저장공간을 감소시키도록 고안된 최적군집방법을 적용한 K-평균 가중커널분류기법이 제안되었다. 이 방법은 원래의 훈련표본보다 작은 수의 참고벡터들과 그들의 가중값을 들을 찾아 원래 커널분류 기준을 근사화하여 패턴을 인식하는 것이다. K-평균 가중커널분류기법은 가중파젠윈도우(WPW)분류기법을 개량한 것으로서 참고벡터들을 계산하기 위한 초기 부적절하게 군집된 관측값들을 최적으로 재군집화 함으로써 WPW기법의 단범을 극복하였다. 실제자료들에 제안된 방법을 적용한 결과 WPW분류기법보다 참고벡터들의 대표성과 자료축소면에서 월등히 향상된 결과를 확인하였다

  • PDF

계층적 슬라이싱 알고리즘을 사용한 정맥 패턴 검출 (Extraction of Vein Patterns using Hierachical Slicing Algorithm)

  • 최원석;장경식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.861-864
    • /
    • 2009
  • 최근에는 손의 다양한 부위에서 정맥을 인식하기 위한 생체인식 기술이 활발히 진행 중이다. 본 논문에서는 정맥 패턴을 검출하기 위한 계층적 슬라이싱 방법을 제안한다. 스캔한 정맥 이미지를 다양한 두께 값으로 슬라이싱한다. 슬라이스된 이미지에서 평균 밝기값을 구하고 이를 곡률 값으로 변환하여 정맥 후보 구역을 검출한다. 이 정맥 후보 지역을 재검색하여 중복 검출된 지점을 분석하여 실제의 정맥 패턴을 찾아낸다. 이를 통해 원래 이미지에서 정맥 패턴을 검출하는 새로운 알고리즘을 제안한다.

  • PDF

고속 문자 인식을 위한 특징량 추출에 관한 연구 - 방향정보의 반복적 추출과 특징량의 계층성을 이용하여 - (A Study on the Feature Extraction for High Speed Character Recognition -By Using Interative Extraction and Hierarchical Formation of Directional Information-)

  • 강선미;이기용;양윤모;양윤모;김덕진
    • 전자공학회논문지B
    • /
    • 제29B권11호
    • /
    • pp.102-110
    • /
    • 1992
  • In this paper, a new method of character recognition is proposed. It uses density information, in addition to positional and directional information generally used, to recognize a character. Four directional feature primitives are extracted from the thinning templates on the observation that the output of the templates have directional property in general. A simple and fast feature extraction scheme is possible. Features are organized from recursive nonary tree(N-tree) that corresponds to normalized character area. Each node of the N-tree has four directional features that are sum of the features of it's nine sub-nodes. Every feature primitive from the templates are added to the corresponding leaf and then summed to the upper nodes successively. Recognition can be accomplished by using appropriate feature level of N-tree. Also, effectiveness of each node's feature vector was tested by experiment. A method to implement the proposed feature vector organization algorithm into hardware is proposed as well. The third generation node, which is 4$\times$4, is used as a unit processing element to extract features, and it was implemented in hardware. As a result, we could observe that it is possible to extract feature vector for real-time processing.

  • PDF

간 경변 진단시 신경망을 이용한 분류기 구현 (Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis)

  • 박병래
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.17-33
    • /
    • 2005
  • 자기공명영상과 계층적 신경망을 이용하여 간경변증을 단계별로 분류하고자 하였다. 내원한 231명의 데이터를 분석하였으며, 각 단계별 분류는 정상,1, 2, 3단계로 분류하였다. TI강조 자기공명 간 영상으로부터 정상 간 실질과 간 경변 결절을 추출하고, 간 경화증의 단계를 객관적으로 해석 분류하였다. 간 경변 분류기 구현은 계층적 신경망을 이용하였고, 명암도 분석과 간 결절 특성을 통하여 정상간과 3단계의 간 경변으로 구분하였다. 제안한 신경망 분류기는 오류 역전파 알고리듬을 이용하였다. 분류결과 인식율이 정상군은 $100\%$, 1 단계는 $82.8\%$, 2 단계는 $87.1\%$, 3 단계는 $84.2\%$의 분류율을 나타내었다. 신경망 분류 결과와 전문의 판독 결과를 서로 비교한 결과 인식률은 매우 높게 나타났다. 만일 더욱더 충분한 데이터나 파라미터를 가지고 지속적으로 수행한다면 간 경변 환자들에게 임상적으로 지원하는 도구뿐만 아니라 의료전문 신경망으로도 기대된다.

  • PDF

8진트리 모델을 사용한 3D 물체 모델링과 특징점 (3D Object Modeling and Feature Points using Octree Model)

  • 이영재
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.599-607
    • /
    • 2002
  • 8진트리 모델은 3차원 물체를 계층적으로 모델링할 수 있는 기법으로 임의의 시각 방향에서 투영영상을 생성할 수 있으므로 3차원 물체인식 등 다양한 분야에서 효율적인 데이터 베이스로 사용될 수 있다. 본 논문에서는 8진트리 모델을 사용해 투영 영상을 만들어 보고 Multi level boundary search 알고리즘을 사용해 표면 영상을 생성해 본다. 또한 2D 영상과 3D 영상의 특징점을 구하는 방법과 2D 특징점, 3D 특징점의 기하학적 변환을 통하여 유사 특징점을 찾는 방법에 대하여 언급한다. 이 방법들은 3D 물체 모델링을 위한 효율적인 데이터 베이스 구축과 물체 특징점 응용을 위한 기본 자료로 활용될 수 있다.

  • PDF