• 제목/요약/키워드: Hierarchical Bayesian method

검색결과 59건 처리시간 0.026초

Hierarchical Bayesian Inference of Binomial Data with Nonresponse

  • Han, Geunshik;Nandram, Balgobin
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.45-61
    • /
    • 2002
  • We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제29권4호
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

A pooled Bayes test of independence using restricted pooling model for contingency tables from small areas

  • Jo, Aejeong;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.547-559
    • /
    • 2022
  • For a chi-squared test, which is a statistical method used to test the independence of a contingency table of two factors, the expected frequency of each cell must be greater than 5. The percentage of cells with an expected frequency below 5 must be less than 20% of all cells. However, there are many cases in which the regional expected frequency is below 5 in general small area studies. Even in large-scale surveys, it is difficult to forecast the expected frequency to be greater than 5 when there is small area estimation with subgroup analysis. Another statistical method to test independence is to use the Bayes factor, but since there is a high ratio of data dependency due to the nature of the Bayesian approach, the low expected frequency tends to decrease the precision of the test results. To overcome these limitations, we will borrow information from areas with similar characteristics and pool the data statistically to propose a pooled Bayes test of independence in target areas. Jo et al. (2021) suggested hierarchical Bayesian pooling models for small area estimation of categorical data, and we will introduce the pooled Bayes factors calculated by expanding their restricted pooling model. We applied the pooled Bayes factors using bone mineral density and body mass index data from the Third National Health and Nutrition Examination Survey conducted in the United States and compared them with chi-squared tests often used in tests of independence.

기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성 (Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information)

  • 이정훈;이옥정;서지유;김상단
    • 한국수자원학회논문집
    • /
    • 제54권10호
    • /
    • pp.747-757
    • /
    • 2021
  • 극한 강우의 정량화는 홍수방어계획의 수립에 대단히 중요하며 극한 강우의 일반적인 척도는 T-년 재현기간으로 표현된다. 본 연구에서는 기후정보와 지리정보가 결합된 계층적 베이지안 모형을 이용하여 재현기간별 일 강우량의 공간 분포 및 불확실성을 추정하는 방법을 제시하고 이를 서울-인천-경기 지역에 적용하였다. 한국 기상청에서 운영 중인 서울-인천-경기 지역의 6개 종관기상관측소의 연 최대 일 강우량이 일반화된 극치 분포에 적합되었다. 지점 빈도해석과 지수 홍수법을 이용한 지역 빈도해석으로부터 도출된 재현기간별 일 강우량과의 비교를 통하여 제안된 방법의 적용성 및 신뢰도를 살펴보았다. 모든 지점과 모든 재현기간에서 지수홍수법에 의한 지역 빈도해석의 불확실성이 가장 큰 것으로 나타났으며, 계층적 베이지안 모형에 의한 지역 빈도해석의 신뢰도가 가장 높은 것을 확인하였다. 제안된 방법은 서울-인천-경기 지역 및 공간적인 크기가 유사한 다른 지역에서 다양한 지속기간에 대한 확률강우량 지도를 생성하는데 사용될 수 있을 것이다.

BAYESIAN HIERARCHICAL MODEL WITH SKEWED ELLIPTICAL DISTRIBUTION

  • Chung, Youn-Shik;Dipak K. Dey;Yang, Tae-Young;Jang, Jung-Hoon
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.425-448
    • /
    • 2003
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution proposed originally by Chen et al. (1999) and Branco and Dey (2001). These rich classes of models combine the information of independent studies, allowing investigation of variability both between and within studies, and incorporate weight function. Here, the testing for the skewness parameter is discussed. The score test statistic for such a test can be shown to be expressed as the posterior expectations. Also, we consider the detail computational scheme under skewed normal and skewed Student-t distribution using MCMC method. Finally, we introduce one example from Johnson (1993)'s real data and apply our proposed methodology. We investigate sensitivity of our results under different skewed errors and under different prior distributions.

A Bayesian Variable Selection Method for Binary Response Probit Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.167-182
    • /
    • 1999
  • This article is concerned with the selection of subsets of predictor variables to be included in building the binary response probit regression model. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the probit regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. The appropriate posterior probability of each subset of predictor variables is obtained through the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as the one with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

계층적 베이지안 네트워크를 사용한 서비스 로봇과 인간의 상호 주도방식 의사소통 (Mixed-Initiative Interaction between Human and Service Robot using Hierarchical Bayesian Networks)

  • 송윤석;홍진혁;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권3호
    • /
    • pp.344-355
    • /
    • 2006
  • 일상 생활에서 서비스 로봇이 효과적으로 사람들의 업무를 보조하기 위해서는 인간과의 상호작용이 매우 중요하다. 그 중 대화는 인간과 로봇이 보다 유연하고 풍부한 의사전달을 하는데 유용하다. 전통적인 로봇 연구에서는 의사소통 방법으로 명령과 같은 간단한 질의 등을 사용하였으나 실제 사람들의 대화는 보다 복잡하고 다양하며 배경 지식이나 대화의 문맥 등에 의해 중요한 정보가 생략되기도 한다. 따라서 동일한 질의라도 다양한 의미를 갖기 때문에 정확한 해석을 위해서는 이를 다루어야 한다. 본 논문에서는 계층적 베이지안 네트워크를 사용하여 '상호-주도형' 의사 소통 방식을 서비스 로봇에 구현함으로써 대화의 모호성을 처리하는 방법을 제안한다. 또한 서비스 로봇의 시뮬레이션과 사용자 평가를 통해 제안하는 방법의 유용성을 확인하였다.

Bayesian Test of Quasi-Independence in a Sparse Two-Way Contingency Table

  • Kwak, Sang-Gyu;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.495-500
    • /
    • 2012
  • We consider a Bayesian test of independence in a two-way contingency table that has some zero cells. To do this, we take a three-stage hierarchical Bayesian model under each hypothesis. For prior, we use Dirichlet density to model the marginal cell and each cell probabilities. Our method does not require complicated computation such as a Metropolis-Hastings algorithm to draw samples from each posterior density of parameters. We draw samples using a Gibbs sampler with a grid method. For complicated posterior formulas, we apply the Monte-Carlo integration and the sampling important resampling algorithm. We compare the values of the Bayes factor with the results of a chi-square test and the likelihood ratio test.

Bayesian estimation for finite population proportions in multinomial data

  • Kwak, Sang-Gyu;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권3호
    • /
    • pp.587-593
    • /
    • 2012
  • We study Bayesian estimates for finite population proportions in multinomial problems. To do this, we consider a three-stage hierarchical Bayesian model. For prior, we use Dirichlet density to model each cell probability in each cluster. Our method does not require complicated computation such as Metropolis-Hastings algorithm to draw samples from each density of parameters. We draw samples using Gibbs sampler with grid method. We apply this algorithm to a couple of simulation data under three scenarios and we estimate the finite population proportions using two kinds of approaches We compare results with the point estimates of finite population proportions and their standard deviations. Finally, we check the consistency of computation using differen samples drawn from distinct iterates.

Bayesian small area estimations with measurement errors

  • Goo, You Mee;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.885-893
    • /
    • 2013
  • This paper considers Bayes estimations of the small area means under Fay-Herriot model with measurement errors. We provide empirical Bayes predictors of small area means with the corresponding jackknifed mean squared prediction errors. Also we obtain hierarchical Bayes predictors and the corresponding posterior standard deviations using Gibbs sampling. Numerical studies are provided to illustrate our methods and compare their eciencies.