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BAYESIAN HIERARCHICAL MODEL WITH SKEWED
ELLIPTICAL DISTRIBUTION!

YounsHiK CHUNG!, Dipak K. DEY? TAEYOUNG YANG® AND
JUNGHOON JANG!

ABSTRACT

Meta-analysis refers to quantitative methods for combining results from
independent studies in order to draw overall conclusions. We consider hi-
erarchical models including selection models under a skewed heavy tailed
error distribution proposed originally by Chen et al. (1999) and Branco
and Dey (2001). These rich classes of models combine the information of
independent studies, allowing investigation of variability both between and
within studies, and incorporate weight function. Here, the testing for the
skewness parameter is discussed. The score test statistic for such a test can
be shown to be expressed as the posterior expectations. Also, we consider
the detail computational scheme under skewed normal and skewed Student-¢
distribution using MCMC method. Finally, we introduce one example from
Johnson (1993)’s real data and apply our proposed methodology. We in-
vestigate sensitivity of our results under different skewed errors and under
different prior distributions.
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1. INTRODUCTION

Meta-analysis is a quantitative method for combining results from indepen-
dent studies and combining information which may be used to evaluate cumula-
tive effectiveness, plan new studies and so on, with wide application in the field of
medicine. There are two main problems in meta-analysis. One is that the study
effects are heterogeneous and usually account for the random effect or hierarchi-
cal models (Morris and Normand, 1992). The other is that meta-analysis may
have the publication bias for example, only studies with significant results are ob-
served. When there exists the publication bias, the weight function can be used
to account for such bias (Larose and Dey, 1996). To solve such problem, Silliman
(1997) introduced hierarchical selection models (HSM) which incorporate weight
function into the general hierarchical model and Chung et al. (2002) presented
semiparametric hierarchical selection model with Dirichlet process prior which is
the extended version of Silliman’s HSM.

In this paper, we consider hierarchical model including selection model with
skewed elliptical error for Bayesian meta-analysis. Such non-normal disturbance
in statistical model has been investigated by several authors for theoretical and
applied interest. Especially as the pioneer of this area, Zellner (1976) considered
a Bayes and classical analysis of linear multivariate Student-¢ regression models.
Azzalini and Dalla-Valle (1996) present a general theory for the multivariate ver-
sion of skew-normal distribution which extends the class of normal distributions
by the addition of a shape parameter. Recently, Branco and Dey (2001) pro-
posed a general class of multivariate skew-elliptical distributions which contain
the multivariate normal, Student-¢, exponential power and Pearson type II, but
with an extra parameter to regulate skewness. Sahu et al. (2001) considered
the regression problem under a skew-elliptical error distribution and developed a
Bayesian methodology for the inference of regression parameters.

The rest of this article is organized as follows. Section 2 reviews the multi-
variate skew-elliptical distribution. The particular cases of normal and Student-¢
distributions are explained as examples. Also, we develop Bayesian hierarchi-
cal model with skew-elliptical errors. The posterior propriety is studied. In
particular, Section 3 includes the Bayesian hierarchical selection models with
skew-elliptical errors. Then the testing for the skewness parameter is discussed.
The score test can be expressed as the posterior expectations. Also, we consider
the detail computational scheme under skew-normal and Student-¢ distributions
using MCMC method. In Section 4, we introduce one example from Johnson
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(1993)’s real data and apply our proposed methodology and investigate sensitiv-
ity of our results under different skewed errors. Finally in Section 5, we discuss
our results and propose directions for future works.

2. BAYESIAN HIERARCHICAL MODEL WITH SKEWED ELLIPTICAL
ERROR

Morris and Normand (1992) consider a hierarchical model as follows:
fore=1,...,n,

Yi=a; +¢,
2 2 2 2 2 (21)
€ ~ N(Ovai )7 ai’/J'a O ~ N(M’Ja)a (Naga) ~ 7r(/1,,0‘a).

For meta-analysis, here we can interpret that Y; is the observed study effect, «; is
the true study effect, o2 is the within-study variance, p is the average study effect
and o2 is between-study variance. The joint prior 7(u,02) can be specified both
proper and improper. Assuming the improper prior distributions still guarantee
the proper posterior distribution and which is proved later. Note that we may
fix o; because it is usually the standard error of an estimate.

In the model (2.1), the error terms are assumed to be symmetric. As men-
tioned in Section 1, we will assign the skew-elliptical distribution to the error
terms ¢; in (2.1) based on Chen et al. (1999), Sahu et al. (2001), and Chung and
Jang (2003). Since the error terms are univariate, we deal with the univariate
random variables.

2.1. Unwanriate skew-elliptical distribution

In this subsection, we present a class of skewed elliptical distribution using
the approach given in Chen et al. (1999), where the skewed random variable
evolves from a sum of a symmetric and positive random variables, and is given
as

e=U+06Z. (2.2)

The important point here is to have U having a symmetric, unimodal and Z hav-
ing a positive skewed distribution. When ¢ = 0, we get the original symmetric
distribution. The parameter ¢ has an easy interpretation and is called the skew-
ness parameter. It can be shown that when ¢ > 0 (6 < 0), then the distribution
is right (left) skewed.
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Following Branco and Dey (2001), we modify their results to the simple ellip-
tical class, where U ~ El(u,0;92) and Z ~ El(0,1;g1) with El(u,0;g9) denotes
the elliptical distribution with location parameter p, dispersion parameter o and
density generator g. That is, if Y ~ El(p,0;g) then the density of Y, fe, is given
by

g

2
_ Yy —
falylp, o;9V) = o712l (L—u)*) , (2:3)
for a non-increasing function g("), u > 0, such that

00 = e i 2.4

where g(u) is a non-increasing function such that the integral [° w1 2g(u)du
exists. Such g is called the density generator function. From now onwards, we
consider the following transformation (2.2). Following Azzalini and Dalla-Valle
(1996), the skew-elliptical class is developed by considering the random variable

e[ (Z > 0), (2.5)

denoted by SE(u,0,d;g).

THEOREM 2.1 (Sahu et al., 2001). Under the above assumption, the proba-
bility density function of €| (Z > 0) defined in (2.5) is given by

flelp,0,8;9) = 2fu(eln, o + 8% )

e
0, 1,gq(y*)) (2.6)

where fo(€|lp, 0;9) is the same as defined in (2.3) and F,; denotes the elliptical

XFel 6y*
(0 +62)\/1 = 62(c + 6%)~ 1

distribution corresponding to the elliptical density fe,

(1) (y) = I'(1/2) gla +u)
¢ w2 [P ri2g(a + r)dr’

a >0, (2.7)

and

q(ys) =y (1 + )7y, =y — (2.8)
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EXAMPLE 2.1 (Skew-normal distribution). Let g(u) = e~%/2. Then it is easy
to show that ¢(V) (u) = e~*/2/\/27 and gé};*) is free of q(y«). Now, the probability
density function of the skew-normal distribution is given by

€—p (e — )

flelp,0,0) = 2¢ (m) x @ (W) , (2.9)
where ¢ and ® denote the density and cdf of standard normal distribution, re-
spectively. This density in (2.9) is exactly the same as the density of e = U + 62
with U ~ N(p,0) and Z ~ N*+(0,1) where N(0,1) denotes the folded normal
distribution to the right at zero. Therefore, we can express the skew-normal dis-
tribution of € as € = U + 0Z with U ~ N(u,0) and Z ~ N*(0,1). This result
corresponds to that of Azzalini and Dalla-Valle (1996).

EXAMPLE 2.2 (Skew-t distribution). Let g(u;v) = (1 +u/v)~*t2/2 Then

u+1>1/2< u 1\ w2
n )

-2 2T -
{r(+1)} (z/—t-a v+lv+a

(1) (. ) = N H2)/2)
9o ( 3 ) F((V—l—l)/Z)

. (2.10)

Therefore, the density of the skew-t distribution is given by

y ~1/2 .
7 (el 0,0) = 2, (gl 1+ 62) x oy ({L‘I(y—)} - L—“)—) (2.11)

v+p \/m
where t, and T, denote the density and its cdf of t-distribution with df v ,
respectively. This density is the same as the density of € = U + 6Z with U ~
t,(u,0) and Z ~ t} (0,1) where t,(u,0) denotes the ¢-distribution with mean
and variance o and df v and t} (0,1) denotes the truncated t-distribution to the
right at zero with df v,.

2.2. Bayesian hierarchical models with skewed elliptical error

Now, our Bayesian hierarchical model with skew-elliptical distribution is pro-
posed by replacing the normal error term in (2.1) with the skewed elliptical error
term in (2.5) as follows: for 1 = 1,...,n,

Y; = o t €,

) ) ) (2.12)
614NSE(070-1176;9)7 al NN(/"L70-a)7 (M’aa’az,d) Nﬂ'(M,O'a,O'“(S),

where SE denotes the skew-elliptical distribution in (2.6). If § = 0, the error

term has the symmetric distribution.



430 Y. CHUNG et al.

To completely specify the Bayesian model, we need to specify prior distribu-
tions for all the parameters. Let & = (a,...,q,)  and 0 = (0?,...,02)!. When
the skew-t models are considered, we need prior distribution for the degrees of
freedom parameter v. Now the posterior density is given by

m(u, a, 0%, 02,5,v|y)

X H {SE(yilai7az27 639(1))N(ai‘u’a Ug)} X ﬂ'(:u'a 0-70(217 57 V)7 (213)

i=1

where y = (y1,...,yn)" and m(u, ,02,6,v) is the joint prior density of u, a,02,6
and v. Note that for the skew-normal models, the distribution of v is omitted.
In our example in Section 4, Johnson (1993) mentioned that 02-2 can be es-
timated by maximum likelihood estimate (MLE). Therefore the information for
o? = (02,...,02)! is assumed to be available and we assign the prior distribu-
tion of &2 to be informative. In practice, we may experiment with improper
prior distributions for 1 and ¢2. A natural question in such a case is whether
the full posterior distribution is proper. The following theorem gives a sufficient

condition for the propriety of posterior.

THEOREM 2.2. Suppose that a2, § and v are independent and their priors
are proper. Then the posterior density in (2.12) is proper under the skew-normal
or skew-t model if n > 1.

The proof is given in Appendix.
In particular, from Examples 2.1 and 2.2, ¢; can be expressed as

€ = u; + 0z, (2.14)

where z; is the truncated normal (or truncated t) random variable, u; has the
normal distribution (or ¢-distribution) and E(z;) denotes the mean of z;. In these
cases, our model in (2.1) can be expressed as

Y; :ai—+—5{zi -—E(Zi)}"rui. (2.15)

The reason for E(z;) to be in (2.15) is that E(Y;) is equal to the predictor «; as
the structure of the linear model. Therefore, E(z;) is called the correction factor
in this set-up.
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3. HIERARCHICAL SELECTION MODELS WITH SKEWED ELLIPTICAL
ERROR

In this section, we introduce Silliman (1997)’s hierarchical selection models
and then extend it to the skew-elliptical model. Silliman (1997)’s hierarchical
selection models (HSM) are as follows: for ¢ =1,...,n,

Yilai, 00 ~ f (il 00),  ilp, 0% ~ N(p,0%), (p,05) ~ w(p,0%), (3.1)
where f“(y;|ci, 0;) denotes the weighted density defined by

(ys) f(yilai, o)

A R
¥ (yili, o) Clar, o) )

(3.2)

with the normalizing constant C(a;,0;) = [w(z) f(z|a,0:)dz where f(z|as,0;)
is unweighted density of z given (a;,0;). In particular, if C(«;,0;) = 1, then
the model in (3.1) is exactly the same as the hierarchical model in (2.1). For
meta-analysis, the interpretation of variables is the same as in (2.1). More detail
results and explanations are given in Silliman (1997) and Chung and Jang (2001).

If we choose the normal distribution as f(y;|a;,04) in (3.2), then the model
in (3.1) is called the hierarchical selection model with normal error (HSMN).
Similarly, the model in (3.1) is called the hierarchical selection model with t error
(HSMT) if choosing the Student-t distribution as f(y;|c;, 0;) in (3.2). From (2.12)
and (2.15), our Bayesian hierarchical model with skew-elliptical distribution is
considered as follows: fori=1,...,n,

Y = a;+6{z; — E(z)}+ui, ain(,u,,Uz), (3.3)
3.3
(Naoiv g, 5) ~ W(M:”?p"a 6)7

where u; has a symmetric, unimodal distribution and 2; has the positive skewed
distribution. If § = 0, the error term has the symmetric distribution.

From now on, the weight function w(y) is considered for the selection model
as in (3.1). The model (3.3) is called the hierarchical selection model with skew-
normal (HSMSN) if the normal and truncated normal distributions are used for
the distribution of the error term u; and z;, respectively and also, the model
(3.3) is said to be the hierarchical selection model with skew-t (HSMST) if the
Student-t and truncated Student-t distributions are chosen as the distribution of
the error term u; and z;, respectively.
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3.1. Hierarchical selection model with skew-normal error (HSMSN)

Assume that z; and u; in (3.3) are distributed as the folded normal and the
standardized normal distribution, respectively. That is, from (3.3), our Bayesian
hierarchical model with skewed normal error (HSMSN) can be written as follows:
fore=1,...,n,

Y; = a;+ 0{z — E(z)} + ui, z ~ NT(0,1), u; ~ N(0,0?),

(3.4)
aillu'7aa ~ N(lho'g)a (uvaaaa‘aé) ~ 7r(/~1'10'(170.75)7

where E(z;) is defined as (2.15) under skew-normal which is evaluated as 2/7.
Under the weight function w(y), for: =1,...,n,

Yilow, 04,8,z ~ {Clai, 04,8,2)} " w(y;) N(ai+6{zi — E(z;)},02), (3.5)

where C(aj,04,0,2;) is the normalizing constant defined by (3.2). From now,
brackets denote the densities for the notational convenience. For example, [X,Y],
[X|Y] and [X] mean the joint, conditional and marginal density, respectively.
Therefore, the complete-likelihood function is expressed as follows:

[yia ay, Zi',u, Oq s Oy 6]

= [yileu, 03,0, 23] |, 00 (2]

58 {C(Oli,O'i,(s, zi)}—1 (01'2)_1/2 exp (—

)
20;

i — o — 8{z — E(z»}ﬁ’)

x(a2)~ 2 exp {—(_‘3#2“)3} exp (i;) I(z > 0). (3.6)

«

In particular, if we take 6 = 0, the model in (3.4) is called hierarchical selection
model with normal error (HSMN) as in Chung et al. (2002). Here, the following
priors are assumed: for i =1,...,n,

:uNN(a')b)7 5NN(maT)a Ug NIG(Cladl)a Ui2 NIG(C27d2)7 (37)

where a,b,m,T,¢1,¢2,d; and dy are assumed to be known. Then the joint pos-
terior density, which is proportional to the product of the complete likelihood
function and the prior density functions, is given as follows:

ﬁ {Clas,0i,8,2)} " (62) Y2 exp (_ lyi —a; — 52{02;- - E(zi)}]2>J

=1
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et o {0 e (2) s (5]

i=1 «

xexp{—%}exp{—%} (o2) (14D exp (—%—). (3.8)

The sampling scheme for the MCMC method can be applied, for which the
following full conditional distributions based on the joint posterior in (3.8) are
needed:

[a’L'aJ(] '7& i)’y7Z7/*['757 0(170'] X {C(ai7ai7 5) Zi)}_l N(ﬂl(ai)>71(ai)) 5

b i+ o2a bol
«a ) =N =1t o’ @ )
[u' 7y7z’ 70070-] ( bn-l—o'g bn-*—o'?l

Bl v, 1,200, 0] o< [ [{Clew, 00,8,2)} 7| N(B1 (), 1 (9)),
i=1
[zl y, 1, 25 (5 # 9), 6,06, 0) o {C(a,04,8,2)} " NH(B1(2:),71(2:)),

n 1
[nglaayaU)zaéa 0'] = IG (Cl + 5 52(0@' —/L)z +d1) ,
1=1

[U?la;y.,y'aza(sv O'a,O'j(j ?é Z)] & {C(ai,O'i,(S, zi)}_l IG(gl(o-i)vpl(ai))a

where
. 2 2 9
) = Jalyi =8z — B(z))] +ofn \_ 0%}
IBl(al) B O'g +Ui2 ) ’)’1(6!1) 0_(214_0?’
B1(8) = Yo {7z — B(z)} (yi — i) >+ mr!

Yimi{z = B(z)Y2oi 2 4770

-1
n(8) = {Z{ﬁ;w + ﬂ  Bi(z) = e T OE())

o2 + §2

7

012 -1 1
7(z) = <~a—?) , &(oy) = 3 +co and
pi(o;) = L lyi — a; — 8{z — E(zi)}]2 + ds.

Then, the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)
is needed for sampling of (o, d, 2;,0;). Therefore, this computation of the pos-
terior distribution is all that is required for making the desired inferences, such
as the computation of quantities, means, standard deviations, credible sets and
predictions.
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3.2. Hierarchical selection model with skew-t error (HSMST)

In this subsection, we consider the model with the skew-t error. Assume z;
and u; in (3.4) have standard folded ¢ distribution and standard ¢-distribution,
respectively. Then, from (3.3), our Bayesian hierarchical model with skewed ¢
error (HSMST) is given by

Y=o + 5{Zi — E(Zi)} + u;,
2~ t,]:(O, 1), wu;~ t,,l(O,O'Z’?), oy ~ N(u,ai), (3.9)
(/1’70’(170-75) ~ 7r(u'70070-75)7

where E(z;) is also expectation of latent variable z; under skew-¢ distribution and
its value is as follows:

N F((V2+l)/2) 2 v
Bl = = -VQ_l\/;

Then, for: =1,...,n,

yilai,ai, 5, Zp ~ {C’t(ai, Ji, Zi,(S)}_l w(yz) t,,l(ai + 5 {Zi — E(zl)} ,Qq (3.10)

where Cy(wy, i, 2;,0) is defined by

Ci(a;, 0, 2i,0) = /w(a;) ty, (z; a5 + 6{z — E(2;) ,a?)dx. (3.11)

In particular, if § = 0, the model in (3.9) is called hierarchical selection model
with standard ¢ error (HSMT) in Chung et al. (2002). Also using the scale
mixtures of normal distribution, we can get for i = 1,...,n,

yilei, 01, 8, 25, wi ~ {Ci{cvi, 07, 2i, )}~ w(ys) N (i +6{z — E(2;)}, wio}),

2 12)
272/

(3.12)

vy 1

w; ~ IG (5, ?) Lzl ~ NYO, ), A~ IG (

The prior distributions for (4,02, d,0) are assumed the same as in (3.7). Then,
the full conditional distributions for MCMC can be expressed as follows:

[al|a](] # i)’Y7za,u'757 Oa,0,W, >‘] & {Ct(aiao-ia(sa zi)}_l N(ﬂ?(ai)772(ai))

bY " Jai+0la  bol
bn+o2 bn+o2

[N|a7Y$Z757UaaU,W7A] = N(

[5Ia,y,,u,z,aa,cr,w, A] & H {Ct(ai70i757 Zi)}_l N(IB2(5)”Y2(5))’

=1
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[ziiavyapﬂzj(j 7£ i)7(57 Oq,0,W, A] X {C(aia0i757 zi)}_l N+(ﬁ?(zi)7’y2(zi))7

1 n
[ailaa}IaN’az’é)a—awv)‘] =1IG (TL+CI, EZ(ai _M)Q +d’1) )
1=1

[01'2|aay7p‘7z357 O'Q,O']‘(j 7£ ’i),W, A] X {C(CYi,O'i,(S, zi)}—l IG(f?(Ui),M(Uz‘)),
[wilaayaﬂ"za 57 Uaawj(j ‘_/é i)aUaA] = IG(&?(wl)apQ(wl))

and
L, ro+1 1
[/\ilav}'J/%Z)&a.aa}‘j(J 7é Z),O’,W] =IG ( 22 3 5(212 + VQ))
where
By(cs) = o8 lyi — 8{zi — B(z)}] + o pwi () = 080 Wi
! 02 + o?w; ’ Y o2+ o2wy]

Y {z— E(z) My — i) (0?w) ! +mr!
B = e - B Pltw T

" B(s))2 -
() = Z{_z_gm_g] |

. g Wwj T
i=1 1t

Nid{yi — a; + 0E(z)}

'wi)\ia?

Pla) = ey, T Gury
1 1
&(o;) = 5 To p2(o;) = S lyi — @ — 0{zi — E(z)}]” + da,
v1+1 1 ,-—ai—é i—EZi 2
La(w;) = 12 and pa(wi) = 5 <[y Z i}l + ’/1) -

3.3. Testing the skewness parameter § = 0

Now, our interest is to derive a test statistic for the null hypothesis
HO :6=0

using the likelihood in (3.6) along with the priors in (3.7). In the various statistical
testing, we select the score test which is based on the viewpoint of Ibrahim et al.
(1998). This test statistic is based on the marginal likelihood of §, denoted by
L(8) which is obtained as follows:

L($) = /H{[yi,ai,zil,u,, 8, 0a,0:)[0:]} 1, 0a)dado dzduda? . (3.13)
i=1
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The score test depends only on posterior expectations of the likelihood

n

[yla’ a9, Z] = H {[yilaia a3, 9, zl]}

=1

evaluated at § = 0. In other words, we need the somewhat different joint posterior
distribution in (3.8). This joint posterior density is given by

[a,0,2]y,8 = 0] /[yla,U,ZJ = 0)[aly, o2)(z][u, o3)leldudoy.  (3.14)

Following Ibrahim et al. (1998), the score statistic for testing Hy : 6 = 0 takes
the form

52
U= V
where
s=LiogL(s) av=_%, L(6)
T B s T T 5 OBy

Under the null hypothesis, it is well-known fact that U has an asymptotic chi-
squared distribution with degree of freedom 1.

THEOREM 3.1. Under the null hypothesis Hy : 6 = 0, the score test statistic

s expressed as
SZ
U=—,
|4

where

2

Vv =5%-F° [d— logly|a, o, 2, (5]‘6

0
d6? ] —F

d 2
<a—510g[y|a,a,z,6”5:0) ,

=0

d

)

_ |2 l
S=F [dd oglyle, 0,2, 0] 5:0] ,

0 = (o, 0,2) and E® denotes the expectation with respect to the joint posterior
density in (3.8).

Appendix gives the proof of this theorem.
To compute the estimates of S and V, we need the first and second derivatives
of the log likelihood function, logly|a, o, 2, §] of the skew-normal case and skew-¢

case.
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3.3.1. Skew-normal error. From (3.5), fori=1,...,n,
[yilai7 oy, 5a zi]

- A w(y;)
- {C(a17ala5a 1)} \/’2—7;(”

where C(a;, 0,0, z;) is the normalizing constant. For example,

2
20}

exp (_[yi —a; — 6{z — E(Zz‘)}]2> = (3.15)

C(Ozi, agj, (5, Zl)

_ ”{1_%(‘%)}“@‘”“"(”%)’ e =l

n* + o7, if w(y) = y|%,

where n = a;+0{z;— E(2;)} and ®(-) denotes the cumulative distribution function
of the standard normal distribution. Therefore, the log-likelihood of the full data,

y = (y1,--- ,yn)t, is given by

logly|a, o, 2, 6]

n n
n
=-%"1 1 ) — = log 2
3 log(Cles 1,8, 20) + 3 og () = 5 log 2

i=1

2
20}

—ilogai—zn: [yi_ai_a{zi_E(Zi)}]Q. (3.17)
=1

1=1

Now we can get the first and second derivatives of (3.17) evaluated at § = 0
which are given by

d
8—6— log{YIaa ag,z, 6]’

_ Z (yi — ai){; — E(z)}
=1 :

- ; {%C(ai, ai, %, 5)‘520} {C(ai, 0i, 2, 5)|(5:0}_1 (3.18)

and
d2

5 loglyle0,2,0]|

= g {Z—;C(ai,ai, i, 6)15:0} {C(ai,ai, i 6)]5:0}_1
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_ Z H az,al,zl,é)LZO} {C(ai,ai,zi,é)lézo}_lr
_ Z {Z_i:.a__2 (z)}? , (3.19)
P ;

Therefore, it follows from (A.1), (A.4) in Appendix, (3.18) and (3.19) that the
estimates of S and V are respectively

5o 1y [i(yi—a§g>>{z§”~fa<zi>}

i=1 (o

=1
and
s o mlee 2?0 @ @ @ @ -1
V:S +5;i:1 {Wc(az adi ’Zl ’5)‘5 0}{ (az aa 721 ’6)‘5 0}
+ (z9) — B(z))?
(012)(9)
LAl @ ) ) @ (9) (9 -17?
G;lzl Hddc(a T 5 ,6)t6:0 {C(al 19 5)|5 0}
G n (@yy. (9
1 (yi — o' H2”" — E(z)} d (@9 (9 (9

where {(agg),a(g) (g))}g: is the MCMC output in Section 3.1.

3.3.2. Skew-t error. Since the skew-t distribution in (3.9) is assumed as the error
term, then the function in (3.10) is expressed as
M +1)/2)

lyile, 04,6, 2] = {Cilcu, 04,6, z)} " w(y;)
t F(u1/2) \ /y17ror-2
(r1+1)/
(1 + [yi — i — 8{z; — E(z }]2> (3.20)

1/10'1-2
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Here, the normalizing constant is quite different from (3.17) and is given by
Ct(aia 01y 67 Zi)
n n’ —(n-1)/2
ofi-om, (-2 )b easte (s ) L itut) =,

i i (3.21)
I/] 2
Vl _ 201 ?

n* + if w(y) =y

Also, n is the same as defined in (3.16), T,, denotes the cdf of standard t-
distribution with degrees of freedom of 14 and J(v1) is given by

F((l/l + 1)/2) ) l/1'/1/2
F(Vl/Z)ﬁ Vl—]-.

Like the skew-normal case, the log-likelihood of the full data is given by

J(n) =

logly|a, 0,2, ]

- —-ilog(ct(ai,O'i,é, %)) +nlog ( L((v1 +1)/2) )
=1

F(yl/Q),/uﬂraiz

i+l anlog<1+ [yi—ai—5{zi—E(Zi)}]2>

2 im1 V10i2
+ i log (242) (3.22)

The first and the second derivatives of (3.22) evaluated at § = 0 have the form:

d
—log[y|a,a,z,5]I

dé 5=0
=— ; {%Ct(ai,ai,& ;) 520} {Ct(aiaUhéy %) 5:0}
“~ (yi — ai){zi — E(z)}
+ 1 , 3.23
d2
Wlog[y‘aﬂjazaé]lézo
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By

—z": [{ —Cy(wi, 04,0, 2) 5_0} {Ct(aiaaiaéazi)

+(1/1+1)Xn:[_ {2 — E(z)}? ]

pane '/101-2 + (% — ai)?

= 2{21 )}2(y2 - az)2
+(u1+1)2[ {W + EpaGE } (3.24)

Therefore, the estimates of S and V are as follows:

»)
Il

S

+

bt
[]e
[ — ]
s

I
vsé\
~

N
2

I

=

N
=

dé
s _ 1[0 0 o (@) (5 (o) -1
"o 592;11:1 Hdﬂc(al %% ’6)‘5=0} {C’(az T ’5)‘5:0}
d (@) (o) (o) @ (&) (o) -11?
_{%C(az 20,75 % 76)‘6:0}{0(051' 207 5% 76)'6—0} ]
G n (9) 2 (9) (9)y2
1 2" —FE(z 2{z;" —E(z)} (yi— oy
+(”1+1)EZZ[ {(gu ( )}<g> - { ® ( al oo i}
g=1i=1 V(o2 +(yi~a;”’) {Vl(ai +(yi—oy”’)?}
G n )
1 (yz‘ag {Zg E(Zi)} (9) o) (o)

l

X{C( @ 50 fg)ﬁ)! _O}—lrJrgz’

where {(a§9)7o_(g)72(g))}f:1 is the MCMC output in Section 3.2.

4. AN ILLUSTRATIVE EXAMPLE

Johnson (1993) reviewed 12 studies comparing the effectiveness of two differ-
ent types of fluoride, NaF which means a sodium fluoride and SMFP which means
a sodium monofluorophosphate, in preventing tooth cavities. For each study, the
observed average difference in effect y; (given by the average increment in de-
cayed, missing, and/or filled surfaces for teeth for patients using SMFP minus
the average increment for patients using NaF), the corresponding standard error
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TABLE 4.1 The original Johnson data

Studies
1 2 3 4 5 6 7 8 9 10 11 12
yi | 0.86 0.33 0.47 0.50 —0.28 0.04 0.80 0.19 0.49 049 0.01 0.67
;1057 0.56 035 025 054 028 078 0.13 028 0.24 0.08 0.17
N | 247 326 277 363 343 1490 418 2273 1352 2762 2222 2126

d;, and its sample size N are given by Table 4.1. If the average increment is pos-
itive, then NaF is more effective than SMFP. In this study we want to know the
overall effect, /i, estimated by weighted average. Johnson found that the estimate
of p1 15 0.32 and 95% confidence interval is (0.13, 0.52), supporting the hypothesis
that NaF is better.

Although Johnson’s result represented the superiority of NaF, her meta-
analysis may have some problem. In particular, she considered 12 studies which
were selected through a world-wide literature search. Actually she found 13 stud-
ies but used only 12, because the thirteenth failed to provide an estimate of the
variance of the study effect and all the study effects except the 5% are positive.
For this reason, it is reasonable that her meta-analysis may have a publication
bias and thus Silliman (1997) applied her HSM in (3.1) into Johnson’s data.

Now, we apply our four Bayesian hierarchical selection models such as HSMN,
HSMT, HSMSN and HSMST in Section 3 to Johnson’s data in Table 4.1. To
analyze Johnson’s data in Table 4.1, we must specify both weight functions and
prior distributions. First, two weight functions will be used, w(y) = |y| and
w(y) = |y|®. Clearly, w(y) = |y| indicates that the larger study effects are more
likely to be observed, while w(y) = |y|* is used for more extreme publication
bias. Under above weight functions, the exact forms of the normalizing constant
are available which are given in (3.16) and (3.21). Now we specify the prior
distributions of parameters of interest. Since the skewness parameter, J, has a
real line support, we assume the Normal distribution with zero mean and variance
10? based on Branco and Dey (2001). Both informative and improper priors of
the overall mean, u, and the between variance, o2, are considered. As informative
priors, we assume that u ~ N(0,0.04) and o2 has the inverse gamma distribution
with mean 0.04 and variance 1, This priors are based on the noniterative estimates
of DerSimonian and Laird (1986). This is referred to as the clinical informative
prior in Johnson (1993). As improper priors, Jeffreys’ priors are used in Silliman
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TABLE 4.2 Geweke statistics for convergence diagnostics

prior |parameter| Geweke statistics|| prior |parameter|Geweke statistics
Inform e —1.280 Jeffreys Q@ ~1.520

7 —1.190 7 —1.690

ol —1.320 ol 0.344

é —1.620 ] 1.870

z 0.298 z —-0.772

o’ 1.390 o’ —0.803

(1997) which is given as

(4.1)

1
2 (0 +02
i=1

We monitor the values of the parameters to four Bayesian hierarchical selec-
tion models under two weight functions and two prior distributions for (u,o2).
Gibbs samplers were run for 5,000 iterations with Metropolis algorithm of 10,000
iterations, where the first 3,000 being discarded as a burn-in period. Convergence
of the Gibbs sampler was assessed via Geweke (1992) method, using the CODA
(Best et al., 1995), with suitable diagnostics in S-PLUS. Then all of the param-
eters had Geweke statistics within + 1.96, indicating convergence is achieved.
The Geweke statistics of each parameter is given by Table 4.2 and the Table 4.3
reports the estimates of p, o2 and 4.

Also the results of the score test for Hy : § = 0 are given in Table 4.4 depend-
ing on the choices of priors. In the Table 4.3, the values in parentheses of the
column containing i denote the estimated posterior probability, Pr(y > 0|data),
the values in parentheses of the column containing 6 denote the 95% credible
interval, the column of 7{u,c2) denotes the form of the prior distributions for
(p,02), i.e., inform means the informative prior distributions are assumed for
(4, 02) and Jeffreys does the Jeffreys’ priors and E denotes the 1074, for ex-
ample, 57F denotes 0.0057, respectively. N/A means that the value in the cell
is not appeared. Tables 4.3 says that NaF is more effective since the posterior
probabilities that u is positive are almost around 0.9. It is reasonable to decide
whether NaF is more effective or not by computing the posterior probability that
the average treatment difference p is positive. For informative prior of (u,02),
in Table 4.3, the estimates of x4 under skew-normal error (HSMSN) and skew-¢
error (HSMST) are smaller than those under normal error (HSMN) and ¢ error
(HSMT), respectively regardless of the weight functions. The all estimates of
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TABLE 4.3 Parameter estimates of 1, o2 and &

w(y) | m(p,02) | Models il ] &2
Inform | HSMN | 0.214(0.999) N/A 57E

HSMT | 0.344(0.999) N/A 58E

HSMSN | 0.073(0.915) 0.001(—0.195, 0.212) | 55E

ly| HSMST | 0.266(0.999) | —0.088(—0.294, 0.184) | 5SE
Jeffreys | HSMN | 0.304(0.885) N/A 0.35

HSMT | 0.347(0.970) N/A 0.37

HSMSN | 0.313(0.915) | 0.011(~0.205, 0.163) | 0.44

HSMST | 0.327(0.940) | —0.019(-0.221, 0.190) | 0.34

TABLE 4.4 Results of the Ho : § =0

w(y) | n(w,02) | Models U p-value
Inform | HSMSN | 1.365 | 0.2430
ly] HSMST | 0.548 | 0.4594
Jeffreys | HSMSN | 2.244 | 0.1336
HSMST | 0472 | 0.4926

2
o

the between-study variance ¢ are almost 0.005. The estimated posterior prob-
abilities that p > 0 are almost 0.99 which means that NaF is more effective in
combatting cavities than SMFP. Similar results also happen except the estimated
of 02 when the Jeffreys’ prior is assumed. Therefore, our limited experience says
that the evidence in favor of NaF is robust to choice of priors.

Next, we consider the skewness of error, ¢.e., whether 6 = 0 or not. Table 4.4
contains the observed values of a score statistic U and these significant proba-
bilities (p-value). For example, in Table 4.4, the observed value of the score test
statistic under HSMSN with w(y) = |y| and the informative priors of 7(u,c2) is
1.365 and its p-value i1s 0.2430. In Table 4.3, the estimates of § are almost close
to zero in any case and its 95% credible intervals contains zero. Therefore, our
limited experience shows that this data set supports no skewness in our model.
Furthermore, Tables 4.4 tells us that our data in Table 4.1 supports there is no
skewness, i.e., 6 = 0 in every skewed models since p-values are larger than the

general significant level (o = 0.05).
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5. CONCLUDING REMARKS

In this paper, we introduce the hierarchical selection models including skewed
errors developed by Silliman (1997)’s which can be applied meta-analysis. A
general class of skew-elliptical distribution is reviewed, the posterior propriety
under assuming skewed error and improper prior for some parameters is proved.
Using the method of Chen et al. (1999) we construct sampling structure so
that MCMC can be conducted. Also, the score test for skewness parameter is
available. Our proposed methodology is applied Johnson (1993)’s data.

The hierarchical selection models with skewed errors are big class including
symmetric error models so it can be applied various statistical field such as re-
gression problems and reliability analysis and so on.

Further work may include following things: first, the model selection proce-
dure is required. The general Bayes factor cannot have a closed form so we must
find reasonable measure which can be adapted our situation to compare model
selection. Second, it is solved the problems of estimating degrees of freedom, vy
and v, under skew-t models. Though Branco and Dey (2001) and Sahu et al.
(2001) assume random degrees of freedom but their sampling methods such as
adaptive-rejection are still inefficient which is needed more efficient sampling algo-
rithm. Finally, for more effective analysis it is considered creating the simulating
dataset under selection models.

APPENDIX : PROOFS OF THEOREMS

PROOF OF THEOREM 2.2. Assume7(y) o< 1 and 02 ~ IG(c,d) where ¢,d —
0. Let

= //H [S—E(yilozua?w5 : g(l))N(aiIu,Ui)]
i=1
xw(p)m(o2)r(a?, 8, v)dadudo?doldédy.

It is sufficient to show that A is finite. Now,

2n o;)? d yi—oy
A=C (1 (-———1—>F -t 10,1, 41
1/ T, (02 1 69 1/2H{ 1o ) Na sl

2
n/2 H [exp{ ,u) }]ﬂ(p)w(oj)’/r(ag)ﬂ(é)w(u)dadudazdagdédu
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<C?/nz1 TEER (o2 n/?iﬁl{ (%)}
x[ /R exp{—E———;’—)Q} ]n 7 (8)7 (v)derdordo dbdv,

OL

where C and (9 are some constants. Note that

n AP / 2
R 20& n

First, for the skew-normal model, we do not need the parameter v. It follows
from Example 2.1 that

i 1 [od
AL 03/1—[;1 ( 02 + 62)1/2 ) (02)n/2 n

« H / exp{ (i = O")z) } do 7(0 ) m(02 )7 (6)dodo2ds

(0} 2462

<y / (“2‘)61:1)‘/5 () (02)m(0)dodo2ds
O’a

<af {/ e e (5) dai}”("z)”(‘”d"Qd‘s

where C5 and Cj are appropriate constants, too. Now as ¢,d — 0 the inner
integral is finite if n > 1. Hence A is finite.

Finally, consider the skew-f model. It follows from Example 2.2 that

. v+ 1)/2) u ~(r+1)/2
gV (u;p) = /2] o) O (1+2) .

v

Therefore,

1 T (yi — a;)? R
A< 4= 7 doy
<6 [ a1l [ () &

2
x (02)™/2 252 —on m(o?)n(02)n(8)m(v)do?do? dédy,

where J = T((v + 1)/2) {T(v/2) (vm)~(1/2) }_1. After some straightforward alge-
bra, we can get the product of inner integral, i.e.,

n

(yi — o)? _(UH)/? n - 2 1/2
H[/R{l—k—(g or — Tt + )

i=1



446 Y. CHUNG et al.

Therefore,

1 ) .
A< CG/W m(o) (o) (6)n(v)do?do?dédy

< G / / / { / (03);_1) 5 (Ugim exp (—%) dag} (o) (8 (v)dor 2 dsdy

where C5 and Cg are appropriate constants. Also 7(v) is proper, A is finite as
¢,d — 0 if n > 1. The proof is complete. a

PROOF OF THEOREM 3.1. Let S = d{log L(6)}/dd|s=0. Then, it can be
shown by direct computations that

S = / log[y|a, &,2,8 = 0)7(0ly,d = 0)dadzdo?,

where
[¥le,7,2,6 = O][z][o e
[lyle, 0,2,6 = 0][z][0?][a)ddzdo?

denotes the joint posterior distribution of # = (e, o, 2) given (y,d = 0). Thus,

m(0ly,6 =0) =

0
= Fr . A
S = T logL(é)‘6 . =F [dé logly|a, o,z 5]'6_0] (A1)
By using the similar computations as above, we can derive the form of V as
follows:
d2
V= g o L0 _,
= _d—é[{/ <d5[Y|a o,z 5]’5_0) [z)][o°][a]dadzdo }
-1
X {/[Y|a,a,z,6 = 0][2][02][a]dadzd02} }
=5 - W, (A.2)
where

[z][o’][a] 2
W= / (d(52 yle, oz 5]’ Ho) [lyle,o,2,6 = 0][z][02][a]dadzd0'2dadZdU '
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Then, W can be expressed as follows:

yle, 0.2, 5 = OJ[Z][ *Jlo]
Tl 0,2,6 = 0][z][o ][] dadado?

_ / (;52 logly|a, o,z 5]‘ ) Oly, 6 = 0)dadzdo?

] dadzdo?

2
+/ <dd§1°g[y‘°‘ o2 5]‘ 0) m(0ly, 8 = 0)dadzdo?
= 7| vl o 5]‘ +2| (L toglyla 0,2 5]’ 2 (A:3)
d(52 [ R 5=0 d6 B ‘

where 7(0ly,d = 0) is the same as defined above. Therefore, it follows from (A.2)
and (A.3) that

V=52
2 o[ & 0 d ?
= —EF | —=1 é - F 1
S [d(sg oglyla, o, 2, ]IH] (d(S oglyle, 0,2, 5]' _0>
(A.4)
This completes the proof. O
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