최근에 대화형 에이전트에서 사용자 질의의 주제 추론을 위하여 베이지안 네트워크가 효과임이 발표되었다. 하지만 베이지안 네트워크는 설계에 있어서 많은 시간이 소요되며, 스크립트(대화를 위한 데이타베이스)의 추가 변경시에는 베이지안 네트워크도 같이 수정해야 하는 번거로움이 있어 대화형 에이전트의 확장성을 저해하고 있다. 본 논문에서는 스크림트로부터 베이지안 네트워크를 자동으로 생성함으로써 베이지안 네트워크를 이용한 대화형 에이전트의 확장성을 높이는 방법을 제안한다. 제안한 방법은 베이지안 네트워크의 구성노드를 계층적으로 설계하고, Noisy-OR gate를 사용하여 베이지안 네트워크의 조건부 확률 테이블을 구성한다. 피험자 10명이 대화형 에이전트를 위한 베이지안 네트워크를 수동 설계한 것과 비교한 결과 제안하는 방법이 효과적임을 알 수 있었다.
일상 생활에서 서비스 로봇이 효과적으로 사람들의 업무를 보조하기 위해서는 인간과의 상호작용이 매우 중요하다. 그 중 대화는 인간과 로봇이 보다 유연하고 풍부한 의사전달을 하는데 유용하다. 전통적인 로봇 연구에서는 의사소통 방법으로 명령과 같은 간단한 질의 등을 사용하였으나 실제 사람들의 대화는 보다 복잡하고 다양하며 배경 지식이나 대화의 문맥 등에 의해 중요한 정보가 생략되기도 한다. 따라서 동일한 질의라도 다양한 의미를 갖기 때문에 정확한 해석을 위해서는 이를 다루어야 한다. 본 논문에서는 계층적 베이지안 네트워크를 사용하여 '상호-주도형' 의사 소통 방식을 서비스 로봇에 구현함으로써 대화의 모호성을 처리하는 방법을 제안한다. 또한 서비스 로봇의 시뮬레이션과 사용자 평가를 통해 제안하는 방법의 유용성을 확인하였다.
Most attempts at Bayesian analysis of neural networks involve hierarchical modeling. We believe that similar results can be obtained with simpler models that require less computational effort, as long as appropriate restrictions are placed on parameters in order to ensure propriety of posterior distributions. In particular, we adopt a model first introduced by Lee (1999) that utilizes an improper prior for all parameters. Straightforward Gibbs sampling is possible, with the exception of the bias parameters, which are embedded in nonlinear sigmoidal functions. In addition to the problems posed by nonlinearity, direct sampling from the posterior distributions of the bias parameters is compounded due to the duplication of hidden nodes, which is a source of multimodality. In this regard, we focus on sampling from the marginal posterior distribution of the bias parameters with Markov chain Monte Carlo methods that combine traditional Metropolis sampling with a slice sampler described by Neal (1997, 2001). The methods are illustrated with data examples that are largely confined to the analysis of nonparametric regression models.
최근 유비쿼터스 컴퓨팅에 대한 관심이 높아지면서 유비쿼터스 환경에서의 서비스를 위한 인간과 컴퓨터의 상호 작용, 특히 인간의 행동을 인식하는 연구가 활발히 진행되고 있다. 기존의 영상기반 연구와는 달리 모바일 환경에 적합하도록 가속도 센서, 생리신호 센서 등 다양한 센서들을 활용하여 사용자의 행동을 인식하는 기법이 연구되고 있다. 본 논문에서는 멀티모달 센서들을 통합하고 동적 베이지안 네트워크를 계층적으로 구성하여 사용자의 행동을 인식하는 방법을 제안한다. 연산량이 비교적 적은 베이지안 네트워크로 전반적인 사용자 행동을 추론하고 획득된 각 행동의 확률순으로 동적 베이지안 네트워크를 구성한다. 동적 베이지안 네트워크는 OVR(One-Versus-Rest) 전략으로 학습되며, 확률순으로 행동이 검증되어 임계치를 넘는 경우 선택된 행동보다 낮은 확률의 행동에 대한 동적 베이지안 네트워크를 검증하지 않아 추론 연산량을 줄인다. 본 논문에서는 가속도 센서와 생리적 신호 센서를 기반으로 총 8가지의 행동을 인식하는 문제에 제안하는 방법을 적용하여 평균적으로 97.4%의 분류 정확률을 얻었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5819-5840
/
2018
Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with various attacks launched by malicious nodes, which include network eavesdropping, channel interference and data tampering. The existing intrusion detection algorithm does not take into consideration the resource constraints of cluster heads and sensor nodes. Due to application requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal defense strategy is primarily introduced. Given the flexibility that wireless communication provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over time. Instead, malicious nodes can dynamically update the attack strategy in response to the IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical analysis, the optimal behaviors of rational attackers and defenders are derived and calculated accurately. The numerical experimental results validate the effectiveness and robustness of the proposed scheme.
When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.
지구 온난화 문제와 화석 연료 양의 한계 때문에 재생 가능한 전력 생산에 대한 관심이 증가하고 있다. 특히 재생 에너지 중 태양광 에너지의 전력 생산 비율은 점차 증가함에 따라 집광형 태양광발전 시스템은 높은 전력 생산량으로 각광받고 있다. 하지만 이 시스템은 태양광 중첩률이 높을 때 가장 높은 발전 효율을 내기 때문에 허용 오차 범위가 작은 정밀 태양 추적 시스템이 필요하다. 본 논문에서는 복잡한 환경에 대응할 수 있는 베이지안 네트워크와 나이브 베이즈 분류기를 이용한 계층적 추적 시스템을 제안한다. 베이지안 네트워크는 불완전하고 불확실한 상황을 모델링 하는데 강력한 모델로 충분한 양의 데이터가 없을 경우에도 도메인 지식을 바탕으로 네트워크를 설계할 수 있다는 장점이 있다. 제안하는 계층적 확률 시스템에서는 불확실한 하늘 상황을 9개로 분류하고 모듈형 베이지안 네트워크를 이용하여 현재 날씨 상황을 추론한다. 또한 나이브 베이즈 분류기를 이용하여 추론된 날씨 상황을 고려한 효율적인 추적 방법을 분류하고 선택한다. 베이지안 네트워크의 유용성을 평가하기 위해 실제 날씨 데이터를 수집하였고 평균 93.9%의 정확도(Accuracy)를 보였다. 또한, 제안하는 시스템과 핀홀 카메라 시스템의 태양광발전 효율을 비교한 결과 약 16.58%의 성능이 향상됨을 확인하였다.
영상을 분석하여 얻은 증거를 바탕으로 장면의 의미를 추론하고 해석하는 것을 시각 기반 장면 이해라고 하며, 최근 인과적인 판단 및 추론 과정을 모델링하기에 유리한 베이지안 네트워크(BN)를 이용한 확률적인 접근 방법이 활발히 연구되고 있다. 하지만 실제 환경은 변화가 많고 불확실하기 때문에 의미 있는 증거를 충분히 확보하기 어려울 뿐만 아니라 전문가에 의한 설계로 유지하기 어렵다. 본 논문에서는 증거 및 학습 데이타가 부족한 장면인식 문제에서 효율적인BN 구조로 계산 복잡도가 줄어들고 정확도는 향상될 수 있는 BN 학습방법을 제안한다. 이 방법은 추론 대상 환경의 도메인 지식을 온톨로지로 표현하고 이를 제한적으로 사용하여 효율적인 계층구조의 BN을 구성한다. 제안하는 방법의 평가를 위하여 9종류의 환경에서 90장의 영상을 수집하고 레이블링하여 실험하였다. 실험 결과, 제안하는 방법은 증거의 수가 적은 불확실한 환경에서도 좋은 성능을 내고 학습의 복잡도가 줄어듦을 확인할 수 있었다.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.336-342
/
2001
One of the most important problems on rule induction methods is that they cannot extract rules, which plausibly represent experts decision processes. On one hand, rule induction methods induce probabilistic rules, the description length of which is too short, compared with the experts rules. On the other hand, construction of Bayesian networks generates too lengthy rules. In this paper, the characteristics of experts rules are closely examined and a new approach to extract plausible rules is introduced, which consists of the following three procedures. First, the characterization of decision attributes (given classes) is extracted from databases and the classes are classified into several groups with respect to the characterization. Then, two kinds of sub-rules, characterization rules for each group and discrimination rules for each class in the group are induced. Finally, those two parts are integrated into one rule for each decision attribute. The proposed method was evaluated on a medical database, the experimental results of which show that induced rules correctly represent experts decision processes.
인과 관계에 대한 직관적인 개념으로 Bayesian Networks 알고리즘이나 트리 구조 추측 알고리즘 그리고 유전자 알고리즘을 사용하여 다양한 구조의 상황을 예측을 하게 된다. 하지만 이런 예측 알고리즘들을 상황인지 서비스 구현에 적용하기에는 실제 구현의 어려움과 실시간 환경에서 트레이닝 데이터 처리에서 오는 시간 지연 문제 등이 발생하게 된다. 이 때문에 특정 목적의 상황인지 시스템에서 이 알고리즘들이 어느 정도의 예측 정확도와 신뢰도를 가지고 상황 정보에 부합하는지 미지수이다. 따라서 본 논문에서는 기존의 예측 알고리즘과는 다른 접근 방식을 통해, 사용자의 습관이나 행동양식을 데이터베이스로 만들어 이를 고려함으로써 상황인지 시스템의 상황 정보와 부합되는 Flexible Window 기법을 이용한 위치 예측 알고리즘을 제안한다. 제안된 Flexible Window 기법을 이용한 위치 예측 알고리즘은 동일한 실험 조건 아래, Fixed Window 기법을 이용한 위치 예측 알고리즘보다 평균적으로 5.10% 더 우수한 성능을 보인다. 이 방식은 기하급수적으로 늘어나는 상황 정보를 감안했을 때 알고리즘 수행 시 처리 시간의 감소와 예측 정확도를 향상 시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.