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Efficient Markov Chain Monte Carlo for Bayesian
Analysis of Neural Network Models'

Paul E. Green!, Changha Hwang? and Sangbock Lee?

ABSTRACT

Most attempts at Bayesian analysis of neural networks involve hierar-
chical modeling. We believe that similar results can be obtained with sim-
pler models that require less computational effort, as long as appropriate
restrictions are placed on parameters in order to ensure propriety of pos-
terior distributions. In particular, we adopt a model first introduced by
Lee (1999) that utilizes an improper prior for all parameters. Straightfor-
ward Gibbs sampling is possible, with the exception of the bias parameters,
which are embedded in nonlinear sigmoidal functions. In addition to the
problems posed by nonlinearity, direct sampling from the posterior ditribu-
tions of the bias parameters is compounded due to the duplication of hidden
nodes, which is a source of multimodality. In this regard, we focus on sam-
pling from the marginal posterior distribution of the bias parameters with
Markov chain Monte Carlo methods that combine traditional Metropolis
sampling with a slice sampler described by Neal (1997, 2001). The methods
are illustrated with data examples that are largely confined to the analysis
of nonparametric regression models.

Keywords: Feedforward neural networks (FFNN), MCMC sampling, Bayesian
prediction.

1. Introduction

Feedforward neural networks have recently received considerable attention
due to their successful use in a wide variety of statistical applications includ-
ing regression and classification problems. Ripley (1996) covers a broad range of
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topics involving neural networks and discusses varicus applications related to pat-
tern recognition. More recently, the Bayesian method has gained acceptance as a
plausible framework for neural network modeling largely due to the compatibility
of the prior specification with the resulting posterior predictive performance.

Initially, the major impediment to Bayesian implementation of neural net-
works was the calculation of high-dimensional integrals. Bishop (1995b) and
MacKay (1995) provide detailed accounts of Bayesian methods for neural net-
works and use Gaussian approximations to summarize information contained in
posterior distributions. Neal (1996) considers a Bayesian method that uses a
Markov chain Monte Carlo (MCMC) sampler to sample directly from posterior
distributions, and argues for the use of appropriate priors as the number of hidden
nodes increases.

Most Bayesian attempts of neural networks involve hierarchical models at
several levels using proper priors. The priors are usually chosen, not based on
any real prior information, but for mathematical tractibility and ease of compu-
tation. Another justification for using proper priors is that propriety of posterior
distributions is guaranteed. Still, these models tend to be complicated with
numerous hyperparameters, making estimation computationally expensive. In
addition, assessing priors is not always straightforward since eventually at soms
level hyperparameters are required to be fixed in advance.

The focus of this work is to consider Bayesian methods for neural network
models that require less computational effort, yet produce desirable results, using
MCMC sampling. In this regard, we adopt a model first introduced by Lee (1999)
that uses improper priors for all parameters. Then all that is needed to ensurs
propriety of posterior distributions is to require that the columns of the design
matrix are linearly independent, and that the bias parameters are bounded.

Even though the posterior distribution is guaranteed to be proper by placing
restrictions on the bias parameters, fitting neural networks using the output from
Markov chain samplers requires careful consideration. First, the exchangeability
of hidden nodes is a source of multimodality, as discussed in Miiller and Rios Insua
(1998). Constructing an efficient sampler that can jump between multiple modes
is an important task. In addition, neural network models are highly nonlinear,
due to the bias parameters which are embedded in sigmoidal functions.

Due to these considerations, we propose sampling from the marginal posterior
distribution of the bias parameters by combining traditional Metropolis sampling
with a slice sampler as described by Neal (1997, 2001). The slice sampler has
been shown to possess the ability to jump between various modes, making it a
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useful sampler for neural network models. As regards the bias parameters, a
Metropolis sampler is used to sample from the intercept parameters jointly, while
the slice sampler samples from the slope parameters one at a time. Conditional
on the slope parameters, the intercept parameters are jointly close to normal,
making Metropolis a reasonable choice. Conversely, conditional on the intercept
parameters, the slope parameters can be multimodal and ill-behaved, in which
case we use the slice sampler.

Several works have appeared that consider a model selection procedure where-
by the number of hidden nodes is determined by incorporating a reversible jump
Markov chain (Green, 1995) into the MCMC sampler (see, for example, Rios Insua
and Miiller 1998, or Holmes and Mallick 1998). In this work we assume that the
model architecture is fixed in advance, and focus mainly on the development of
efficient MCMC sampling techniques.

In Section 2 the neural network model which defines the likelihood and the
improper prior are described. The procedure for using the sample generated from
an MCMC sampler to perform nonparametric regression is addressed in Section
3. Some calculations that are required to implement MCMC are presented in
Section 4 and the MCMC sampling methods are described in Section 5. Finally,
data examples illustrate the use of feedforward neural networks for conducting
nonparametric regression analysis in Section 6. In what follows, the terms distri-
bution and density are used interchangeably, and random variables are denoted
by uppercase letters while observed realizations are denoted by lowercase letters.

2. A Bayesian Neural Network Model for Nonparametric
Begression

The focus of this work is to develop an efficient MCMC sampler to perform
nonparametric regression using neural network models. We consider a feedfor-
ward neural network model with cne hidden layer and M hidden nodes. In
particular, the model is

M
Yi=Bo+ B ®(x] ;) +e ei ~ N(0,0%), (2.1)
Jj=1
where Y;, 1= 1,..., N is the observed response, xiT = (1, zi1, Ti2, - - - , Tip) are the

explanatory variables, 87 = (By,B1,...,8m) are called the weight parameters,
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7]7-1 = (750,71, -»Vjp) are called the bias parameters, and

T 1 e
<I>(x)=/_oo\/—2_?e v/2 gy
is the activation function. Any smooth sigmoidal function can be used as the acti-
vation function. We choose the standard normal cumulative distribution functicn
to force narrow alternatives for the bias parameters. Other commonly used ac-
tivation functions include the standard logistic cumulative distribution functicn
and the hyperbolic tangent function (see, for example, Bishop 1995a).

In a Bayesian framework it is necessary to specify the likelihood and prior dis-
tributions. Recently, most Bayesian methods that have appeared for feedforward
neural networks involve several levels of hierarchical modeling. In an attempt to
alleviate the computational burden that is associated with assessing models with
large numbers of parameters, Lee (1999) developed a simpler model based on an
improper prior. From (2.1) the likelihood is

Y;Z |1317a02 ~ N()‘iaaz)7

where the normal mean satisfies

M
Xi=Bo+ Y B ®(x! ;)

j=1
and v = (¥1,%2,---,Ya)- The prior, however, is improper for all paramete:s
and is given by

p(B,,0%) o (%) 7.

Later, some restrictions will be imposed on <y to ensure that the posterior distri-
bution is proper. However, the prior for 8 is flat and improper, and the prior for

o2 is the usual improper prior for a scale parameter.

3. Using the Output from an MCMC Sampler

The output from an MCMC sampler will be used to perform nonparametric
regression using a feedforward neural network with one hidden layer and M hid-
den nodes. The highly nonlinear nature of a neural network model! induced by
the bias parameters vy makes estimation and running an efficient MCMC sampler
a challenging task. Nevertheless, once a sample

(B, ~"), t=1,...,K from the posterior p(8,v|y)
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has been generated, predictive means can be calculated using
1 &
Aely) = 2 D> NlB =87 =7"1).
t=1

The method used for generating the sample is the focus of Section § and is
illustrated in the data examples in Section 6. First, however, we consider some
posterior calculations required for implementing the MCMC sampler.

4. Some Posterior Calculations

By combining the normal likelihocod with the improper prior it is straightfor-
ward to show that the posterior distribution can be written as

p(B,7,0%|y)

o (2) M exp [ty (b8 - BT zTzs - B) ], Y

where B and s? resemble the usual estimates from least squares regression.

B= ("2 0Ty, =y 2By~ 2B),
and the design matrix Z is given by
[1 @xn) ... @(x{vm)
z=|: s
L ®(xjry) - 2(xkvm)

Note that the - parameters are embedded in the matrix Z and that 8 and s

also depend on -y through Z.
By holding v and o2 fixed in (4.1), the conditional distribution for 8 is mul-

tivariate normal
Blv,0%y ~ Nu1(B,0*(272)7Y).
Next, we integrate out 8 from (4.1) tc get

_ CU(N—M— N—M-1)s?
p(v,0% |y) o |27 2|71/ (¢2)~((N=M=1/251D) ey, [— WAED)s 552 )

| a2
Then, by holding v fixed in (4.2), the conditional for ¢? is scaled inverse chi-

square
o? | v,y ~ Inv-x*(N—M-1, s?).
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Thus, the conditionals for 8 and o2 are standard densities and are easy to sample
from. The conditional for -, however, is complicated and does not resemblz
any standard distribution. This should not be surprising since «y is embedded
in a nonlinear sigmoidal function. In fact, depending on the data, it is th=
presence of the bias parameters and the duplication of hidden nodes that leads to
multimodality in the posterior surface. In order to understand how - influences
estimation, it may be useful to examine the marginal posterior density.

The marginal posterior density of 4 can be obtained by integrating out o2

from (4.2) to get
1

p(Y]y) o (ZTZ[1/2 gN=M-1"

Two conditions ensure that this distribution is proper. Let ¢; > 0 and ¢3 > 0
be real constants. The first condition, |Z7Z| > ¢;, ensures that the columns
of Z are linearly independent so that the design matrix is not ill-conditioned.
The second condition, |v;| < c2, for all elements of «y; for cach j, ensures that
the integral is finite. These are exactly the same two conditions imposed by
Lee. In practice, ¢ should be chosen large enough so that most of the posterior
density is concentrated away from c;. Centering the covariates helps to alleviate
this problem (see, for example, the discussion in the simulated data example in
Section 6.3).

5. Markov Chain Monte Carlo Methods

The following relation is useful for developing a scheme to sample from the
posterior distribution

P(,@,’Yly) = /p(lB”?'uo'z[y)dO'Z
= /p(,@|’7’,027y) p(()‘zl'y’y) p(’Yly)dO’Q

The joint posterior density can be seen to be a mixture of a multivariate normal,
a scaled Inverse chi-square, and the marginal posterior density of ~v. This joins
density will be proper whenever the marginal density for -y is proper. Thus, the
two conditions outlined in Section 4 are nccessary to ensure propriety of the joint
posterior distribution. The following sampling scheme is presented to implement
the MCMC sampler.

Sample v from p(7y|y).
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Sample o2 from Inv-x?(N—-M-1,s2).
Sample B8 from N4 1(B,0%(272)1).
Repeat for the desired number of iterations.

The density p(v|y) can be very complicated with multiple modes. We combine
traditional Metropolis sampling with a slice sampler (Neal 1997, 2001) to sample
from p(v|y). In particular, Metropolis sampling is used to sample jointly from
the intercept parameters v;o, and slice sampling is used to sample from the slope
parameters (7;1,...,%;p). The motivation for this strategy is that conditional
on the slope parameters, the intercept parameters are jointly close to normal so
that Metropolis sampling with a normal candidate should perform well. On the
other hand, conditional on the intercept parameters, the slope parameters can
have densities with multiple modes, which makes slice sampling attractive, due
to its ability to sample from multimodal densities. In Section 6 some examples
illustrate these points.

FIGURE 5.1. Slice sampling

The slice sampler is an MCMC sampler that works by sampling uniformly
from the support under a density function, say f(z). It works particularly well
for multimodal densities and, unlike Metropolis sampling, for example, it does
not require specification of a candidate distribution. In general, the idea behind
slice sampling from a multimodal density can be illustrated with reference to
Figure 5.1. The user first chooses a real starting value, say Xo. A real value y,
is drawn uniformly from (0, f(Xg)) (shown as the dashed line), which defines the
horizontal slice S (the bold horizontal line). An interval around Xj is found that
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FIGURE 6.1. Metropolis to sample from p(y10ly11,y)

contains much or all of the slice. The new point X; is drawn from the part of the
slice contained within the interval. Neal (1997, 2001) provides several algorithms
for sampling the new value X;.

6. Data Examples

6.1. The Bates and Watts data

The following data appear in Bates and Watts (1988). This is a simple exam-
ple of a nonlinear model, but illustrates the advantages of a slice sampler when
sampling from the slope parameters. Consider a feedforward neural network with
one hidden node (M = 1) and one explanatory variable. The model is

Y; = Bo + 81 ®(vi0 + 1112i) + €&, € ~ N(0,02).

To get a sample from p(vy; |y) = p(710, 711 | ¥), Metropolis sampling is used to
sample from the intercept p(y10 | 711,¥), and slice sampling is used to sample from
(711 | 710,y). Figure 6.1 is a plot of the intercept p(v10|711,y) when vy, = 1.4.
Note that when the slope is fixed, this density is close to normal and Metropolis
with a normal candidate can be expected to perform well. Figure 6.2 is a side-
by-side plot of the slope p(v11|v10,y) when v19 = 0.5. This density appears
fairly well behaved, except at 0, where there is a large spike. The right plot in
Figure 6.2 is a close-up at 0 of the left plot. The reason there is no density in a
small neighborhood of 0 is because this is where the Z matrix is ill-conditioned.
We use a slice sampler to overcome the difficulty of sampling from this density.
When considering the slope parameters in problems of higher dimension, with
larger numbers of hidden nodes, there can be several disjoint regions where there
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FIGURE 6.2. Slice sampler samples from p(v11|v10,y). Right plot:Close-up at 0.

is no density. Finally, Figure 6.3 is a plot of the data and the fitted regression
curve obtained by averaging the regression function over the sampled values.
For this problem we sampled 10,000 values and discarded the initial 3,000 for
burn-in, for an effective sample size of 7,000.

6.2. The Galaxy data

The following data originally appeared in Buta (1987) and a subset using the
first 80 observations are kindly provided by Miiller (personal communication).
Miiller and Rios Insua (1998) fit Bayesian feedforward neural network models
to these data, illustrating some issues of multimodality that occur when the
number of nodes M is too large. They discuss other concerns associated with
traditional MCMC samplers, such as Metropolis, that are related to the difficulty
of sampling from multimodal densities. In other work, Rios Insua and Miiller
(1998) use reversible jump Markov chain Monte Carlo (Green, 1995) as a form of
model selection to automatically choose the number of hidden nodes, in order to
alleviate some difficulties associated with multimodality. In this paper, we focus
on sampling from multimodal densities using a slice sampler. Reversible jump
Markov chain Monte Carlo could be combined with slice sampling to improve
efficiency, but is not considered here. In particular, the model for a feedforward
neural network with M = 2 hidden nodes is

Yi = Bo + B1 ©(vi0 + 111 24) + B2 (20 + Y21 Ti) + &5, & ~ N(0,0%).
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FIGURE 6.3. Bates and Waits data with regression curve

We use a Metropolis sampler to sample from (719, ¥20) jointly, and a slice sampler
to sample from 1 and ~y9; separately. The data and fitted regression curve are
given in Figure 6.4. Due to the exchangeability of hidden nodes, the identifiability
conditions imposed by Miiller and Rios Insua of ordering the slope parameters
(711 < ¥21) is followed.

6.3. The simulated data

In order to assess the ability of the proposed Bayesian neural network model
with an improper prior to perform nonparametric regression based on the under-
lying assumptions, 50 observations were simulated from the model

Y;=—-2+108(—1 —4a;) —58(2 —z;) +8D(1.5 4+ 4xz;) +¢;, € ~ N(0,0.3%).

The data were then fit to a model with M = 3 hidden nodes. Two conditions
that ensure propriety of the posterior distribution are that |Z7Z| > ¢; > 0 and
|v| < ¢z for some real constants ¢; and ¢y > 0. For the first condition we adopt
Lee’s suggestion of setting ¢; = 1/N = 1/30. For the second condition the
absolute values of all bias parameters are restricted to be less than ¢s = 12. Note
that in all data examples, the explanatory variables are scaled to have mean equal
to 0 and standard deviation equal to 1. This facilitates choosing ¢y since x?7j is
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FIGURE 6.4. Galazy daeta with regression curve

an argument to the activation function. The data and resulting fitted regression
curve are presented in Figure 6.5.

FIGURE 6.5. Simulated data with regression curve
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7. Concluding Remarks

The Bayesian method for feedforward neural networks provides a useful frame-
work for performing nonparametric regression using MCMC sampling. The idea
proposed here combines traditional Metropolis sampling with slice sampling.
Both samplers are incorporated into the MCMC scheme in a way that takes
advantage of their strengths. The slice sampler is particularly suited for multi-
modal densities. The Metropolis sampler with a normal candidate is used when
conditional densities are close to normal. In general, slice samplers can be multi-
dimensional, but only the one-dimensional case is considered here.
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