Recently it is proposed that the Bayesian networks used as conversational agent for topic inference is useful but the Bayesian networks require much time to model, and the Bayesian networks also have to be modified when the scripts, the database for conversation, are added or modified and this hinders the scalability of the agent. This paper presents a method to improve the scalability of the agent by constructing the Bayesian network from scripts automatically. The proposed method is to model the structure of Bayesian networks hierarchically and to utilize Noisy-OR gate to form the conditional probability distribution table (CPT). Experimental results with ten subjects confirm the usefulness of the proposed method.
In daily activities, the interaction between humans and robots is very important for supporting the user's task effectively. Dialogue may be useful to increase the flexibility and facility of interaction between them. Traditional studies of robots have only dealt with simple queries like commands for interaction, but in real conversation it is more complex and various for using many ways of expression, so people can often omit some words relying on the background knowledge or the context of the discourse. Since the same queries can have various meaning by this reason, it is needed to manage this situation. In this paper we propose a method that uses hierarchical bayesian networks to implement mixed-initiative interaction for managing vagueness of conversation in the service robot. We have verified the usefulness of the proposed method through the simulation of the service robot and usability test.
Most attempts at Bayesian analysis of neural networks involve hierarchical modeling. We believe that similar results can be obtained with simpler models that require less computational effort, as long as appropriate restrictions are placed on parameters in order to ensure propriety of posterior distributions. In particular, we adopt a model first introduced by Lee (1999) that utilizes an improper prior for all parameters. Straightforward Gibbs sampling is possible, with the exception of the bias parameters, which are embedded in nonlinear sigmoidal functions. In addition to the problems posed by nonlinearity, direct sampling from the posterior distributions of the bias parameters is compounded due to the duplication of hidden nodes, which is a source of multimodality. In this regard, we focus on sampling from the marginal posterior distribution of the bias parameters with Markov chain Monte Carlo methods that combine traditional Metropolis sampling with a slice sampler described by Neal (1997, 2001). The methods are illustrated with data examples that are largely confined to the analysis of nonparametric regression models.
Recently, as the interest of ubiquitous computing has been increased there has been lots of research about recognizing human activities to provide services in this environment. Especially, in mobile environment, contrary to the conventional vision based recognition researches, lots of researches are sensor based recognition. In this paper we propose to recognize the user's activity with multi-modal sensors using hierarchical dynamic Bayesian networks. Dynamic Bayesian networks are trained by the OVR(One-Versus-Rest) strategy. The inferring part of this network uses less calculation cost by selecting the activity with the higher percentage of the result of a simpler Bayesian network. For the experiment, we used an accelerometer and a physiological sensor recognizing eight kinds of activities, and as a result of the experiment we gain 97.4% of accuracy recognizing the user's activity.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5819-5840
/
2018
Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with various attacks launched by malicious nodes, which include network eavesdropping, channel interference and data tampering. The existing intrusion detection algorithm does not take into consideration the resource constraints of cluster heads and sensor nodes. Due to application requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal defense strategy is primarily introduced. Given the flexibility that wireless communication provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over time. Instead, malicious nodes can dynamically update the attack strategy in response to the IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical analysis, the optimal behaviors of rational attackers and defenders are derived and calculated accurately. The numerical experimental results validate the effectiveness and robustness of the proposed scheme.
When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.
The power production using renewable energy is more important because of a limited amount of fossil fuel and the problem of global warming. A concentrative photovoltaic system comes into the spotlight with high energy production, since the rate of power production using solar energy is proliferated. These systems, however, need to sophisticated tracking methods to give the high power production. In this paper, we propose a hierarchical tracking system using modular Bayesian networks and a naive Bayes classifier. The Bayesian networks can respond flexibly in uncertain situations and can be designed by domain knowledge even when the data are not enough. Bayesian network modules infer the weather states which are classified into nine classes. Then, naive Bayes classifier selects the most effective method considering inferred weather states and the system makes a decision using the rules. We collected real weather data for the experiments and the average accuracy of the proposed method is 93.9%. In addition, comparing the photovoltaic efficiency with the pinhole camera system results in improved performance of about 16.58%.
Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.336-342
/
2001
One of the most important problems on rule induction methods is that they cannot extract rules, which plausibly represent experts decision processes. On one hand, rule induction methods induce probabilistic rules, the description length of which is too short, compared with the experts rules. On the other hand, construction of Bayesian networks generates too lengthy rules. In this paper, the characteristics of experts rules are closely examined and a new approach to extract plausible rules is introduced, which consists of the following three procedures. First, the characterization of decision attributes (given classes) is extracted from databases and the classes are classified into several groups with respect to the characterization. Then, two kinds of sub-rules, characterization rules for each group and discrimination rules for each class in the group are induced. Finally, those two parts are integrated into one rule for each decision attribute. The proposed method was evaluated on a medical database, the experimental results of which show that induced rules correctly represent experts decision processes.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.6A
/
pp.550-557
/
2007
We predict a context of various structures by using Bayesian Networks Algorithms, Three-Dimensional Structures Algorithms and Genetic Algorithms. However, these algorithms have unavoidable problems when providing a context-aware service in reality due to a lack of practicality and the delay of process time in real-time environment. As far as context-aware system for specific purpose is concerned, it is very hard to be sure about the accuracy and reliability of prediction. This paper focuses on reasoning and prediction technology which provides a stochastic mechanism for context information by incorporating various context information data. The objective of this paper is to provide optimum services to users by suggesting an intellectual reasoning and prediction based on hierarchical context information. Thus, we propose a design of user location prediction algorithm using sequential matching with n-size flexible window scheme by taking user's habit or behavior into consideration. This algorithm improves average 5.10% than traditional algorithms in the accuracy and reliability of prediction using the Flexible Window Scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.