• 제목/요약/키워드: Hidden markov model

검색결과 641건 처리시간 0.025초

얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구 (A study of hybrid neural network to improve performance of face recognition)

  • 정성부;김주웅
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2622-2627
    • /
    • 2010
  • 24시간 무인 감시 시스템에서 정확한 얼굴 인식은 절대적으로 필요한 요소이다. 그러나 얼굴 인식은 얼굴 영상의 왜곡, 조명, 얼굴의 크기, 얼굴 표정, 배경 영상 등의 변화로 인해 많은 제약이 있다. 본 연구에서는 얼굴 인식의 성능 향상을 위하여 혼합형 신경회로망을 제안한다. 제안한 방식은 신경회로망의 비지도학습 방식인 SOM과 LVQ 알고리즘을 이용하여 구성한다. 제안한 방식의 유용성을 확인하기 위하여 고유얼굴 방식, 은닉 마코프 모델 방식, 다층 신경회로망 방식과 비교한다.

선박의 종류별 선원의 행동오류 추정과 예측에 관한 기초 연구

  • 임정빈;이춘기;정재용;박득진;강유미;박초희
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.19-21
    • /
    • 2018
  • 선원의 행동오류는 해양사고를 야기하는 하나의 직접적인 원인이기 때문에 이를 이해하는 것은 해양사고 예방에 근본이 된다. 선원의 행동오류를 이해하기 위해서는 행동오류를 추정하고 예측할 수 있어야 한다. 본 연구에서는 은닉 마르코브 모델(Hidden Markov Model, HMM)을 이용하여 선원들의 행동오류를 추정하고 예측하였다. 아울러 5가지 선박의 종류 각각에 나타나는 선원들의 행동오류를 서로 비교 분석하였다. 모델에 사용한 데이터는 해양안전심판원의 해양사고 보고서에 기록된 내용을 SRKBB(Skill-, Rule- and Knowledge-Based Behavior) 모델을 기반으로 분류하고 관측 수열을 생성하며 라벨링 작업을 통해서 구축하였다. 구축한 데이터를 적용하여 HMM을 보정하고 파라미터를 획득하여 선원들의 행동오류에 관한 모델을 구축하였다. 실험 결과, 선박 종류별로 선원들의 행동오류의 패턴은 서로 다르고, 이를 통해서 선박종류별 해기사들의 행동오류의 추정과 예측이 가능함을 일차적으로 확인할 수 있었다. 추후 본 연구를 지속 전개하여 해양사고 예방을 위한 인적오류의 저감에 기여할 수 있는 방안을 모색할 에정이다.

  • PDF

HMM을 이용한 얼굴에서 입 특징점 검출에 관한 연구 (A Study on Mouth Features Detection in Face using HMM)

  • 김희철;정찬주;곽종서;김문환;배철수;나상동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.647-650
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

얼굴 표정인식을 위한 2D-DCT 특징추출 방법 (Feature Extraction Method of 2D-DCT for Facial Expression Recognition)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권3호
    • /
    • pp.135-138
    • /
    • 2014
  • 본 논문에서는 2D-DCT와 EHMM 알고리즘을 이용하여 과적합에 강인한 얼굴 표정인식 방법을 고안하였다. 특히, 본 논문에서는 2D-DCT 특징추출을 위한 윈도우 크기를 크게 설정하여 EHMM의 관측벡터를 추출함으로써, 표정인식 성능 향상을 도모하였다. 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었고, 실험 결과로부터 특징추출 윈도우의 크기가 커질수록 표정 인식률이 향상됨을 확인하였다. 또한, CK 데이터베이스를 이용하여 표정 모델을 생성하고 JAFFE 데이터베이스 전체 샘플을 테스트한 결과, 제안 방법은 87.79%의 높은 인식률을 보였으며, 기존의 히스토그램 특징 기반의 표정인식 접근법보다 46.01~50.05%의 향상된 인식률을 보였다.

Automated epileptic seizure waveform detection method based on the feature of the mean slope of wavelet coefficient counts using a hidden Markov model and EEG signals

  • Lee, Miran;Ryu, Jaehwan;Kim, Deok-Hwan
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.217-229
    • /
    • 2020
  • Long-term electroencephalography (EEG) monitoring is time-consuming, and requires experts to interpret EEG signals to detect seizures in patients. In this paper, we propose a novel automated method called adaptive slope of wavelet coefficient counts over various thresholds (ASCOT) to classify patient episodes as seizure waveforms. ASCOT involves extracting the feature matrix by calculating the mean slope of wavelet coefficient counts over various thresholds in each frequency subband. We validated our method using our own database and a public database to avoid overtuning. The experimental results show that the proposed method achieved a reliable and promising accuracy in both our own database (98.93%) and the public database (99.78%). Finally, we evaluated the performance of the method considering various window sizes. In conclusion, the proposed method achieved a reliable seizure detection performance with a short-term window size. Therefore, our method can be utilized to interpret long-term EEG results and detect momentary seizure waveforms in diagnostic systems.

고립단어 인식을 위한 빠른 전처리기의 구현 (Implementation of A Fast Preprocessor for Isolated Word Recognition)

  • 안영목
    • 한국음향학회지
    • /
    • 제16권1호
    • /
    • pp.96-99
    • /
    • 1997
  • 본 논문에서는 고립단어 인식을 위한 빠른 전처리기를 소개한다. 제안하는 전처리기는 적은 계산량으로 후보 단어를 추출한다. 본 전처리기에서는 계산량을 줄이기 위해서 벡터 양자화 대신에 특징 정렬 알고리즘을 사용하였다. 이 전처리기의 유효성을 보이기 위해서 준연속 은닉 마코프 모델을 기반으로 한 음성 인식기와 벡터 양자화를 기반으로 한 전처리기에 대해서 화자독립 고립단어 인식에 대한 성능을 비교했다. 실험에 사용한 음성 데이터는 남성 호자 40명이 발성한 244 단어이며, 40명의 화자 중에서 20명은 전처리기의 훈련용으로 사용했으며 나머지 20명은 평가용으로 사용하였다. 실험의 결과, 음성 데이터에 대해서 90%의 감축을 조건에서 제안한 전처리기는 99.9%의 정확성을 보였다.

  • PDF

조명의 변화에 강건한 얼굴인식 (Face Recognition Method Robust to Change in Lighting Condition)

  • 남기환;한준희;박호식;이영식;정연길;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.1137-1140
    • /
    • 2005
  • 본 논문은 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터베이스 안에서 누구인지를 식별하는 얼굴인식 방법을 제안하였으며, 또한 HMM과 KLT를 이용한 얼굴인식 알고리즘의 수행결과를 비교, 분석하였다. 얼굴인식 방법으로 측정벡터는 직교변환(Karhuman Loevs Trans-form : KLT)의 상관관계를 이용하여 얻은 HMM의 정역학특성을 사용하여 HMM 기존의 얼굴인식 방법에서 인식률을 개선하였으며, 실험결과로써 조명의 조건에 따른 여러 가지 복잡한 주변 상황변화에서도 제안된 방식의 효율성을 입증할 수 있었다.

  • PDF

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF

한국어 방송 음성 인식에 관한 연구 (A Study on the Korean Broadcasting Speech Recognition)

  • 김석동;송도선;이행세
    • 한국음향학회지
    • /
    • 제18권1호
    • /
    • pp.53-60
    • /
    • 1999
  • 이 논문은 한국 방송 음성 인식에 관한 연구이다. 여기서 우리는 대규모 어휘를 갖는 연속 음성 인식을 위한 방법을 제시한다. 주요 관점은 언어 모델과 탐색 방법이다. 사용된 음성 모델은 기본음소 Semi-continuous HMM이고 언어 모델은 N-gram 방법이다. 탐색 방법은 음성과 언어 정보를 최대한 활용하기 위해 3단계의 방법을 사용하였다. 첫째로, 단어의 끝 부분과 그에 관련된 정보를 만들기 위한 순방향 Viterbi Beam탐색을 하였으며, 둘째로 단어 의 시작 부분과 그에 관련된 정보를 만드는 역방향 Viterbi Beam탐색, 그리고 마지막으로 이들 두 결과와 확률적인 언어 모델을 결합하여 최종 인식결과를 얻기 위해 A/sup */ 탐색을 한다. 이 방법을 사용하여 12,000개의 단어에 대한 화자 독립으로 최고 96.0%의 단어 인식률과 99.2%의 음절 인식률을 얻었다.

  • PDF

Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구 (A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model)

  • 김동주;신정훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.43-50
    • /
    • 2016
  • 본 논문에서는 ASM(Active Shape Model) 특징점(Landmark)을 이용하여 정밀한 얼굴영역을 획득하고, 외형기반 접근법으로 표정을 인식하는 방법에 대하여 제안한다. 외형기반 표정인식은 EHMM(Embedded Hidden Markov Model) 및 이진패턴 히스토그램 특징과 SVM(Support Vector Machine)을 사용하는 알고리즘으로 구성되며, 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었다. 더불어, 성능비교는 기존의 눈 거리 기반의 얼굴 정규화 방법과 비교를 통하여 수행되었고, 또한 ASM 전체 특징점 및 변형된 특징을 SVM으로 인식하는 기하학적 표정인식 방법론과 성능비교를 수행하였다. 실험 결과, 제안 방법은 거리기반 얼굴정규화 영상을 사용한 방법보다 CK 데이터베이스 및 JAFFE 데이터베이스 경우, 최대 6.39%와 7.98%의 성능향상을 보였다. 또한, 제안 방법은 기하학적 특징점을 사용한 방법보다 높은 인식 성능을 보였으며, 이로부터 제안하는 표정인식 방법의 효용성을 확인하였다.