• Title/Summary/Keyword: Hidden layers

Search Result 253, Processing Time 0.041 seconds

Vehicle trajectory prediction based on Hidden Markov Model

  • Ye, Ning;Zhang, Yingya;Wang, Ruchuan;Malekian, Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3150-3170
    • /
    • 2016
  • In Intelligent Transportation Systems (ITS), logistics distribution and mobile e-commerce, the real-time, accurate and reliable vehicle trajectory prediction has significant application value. Vehicle trajectory prediction can not only provide accurate location-based services, but also can monitor and predict traffic situation in advance, and then further recommend the optimal route for users. In this paper, firstly, we mine the double layers of hidden states of vehicle historical trajectories, and then determine the parameters of HMM (hidden Markov model) by historical data. Secondly, we adopt Viterbi algorithm to seek the double layers hidden states sequences corresponding to the just driven trajectory. Finally, we propose a new algorithm (DHMTP) for vehicle trajectory prediction based on the hidden Markov model of double layers hidden states, and predict the nearest neighbor unit of location information of the next k stages. The experimental results demonstrate that the prediction accuracy of the proposed algorithm is increased by 18.3% compared with TPMO algorithm and increased by 23.1% compared with Naive algorithm in aspect of predicting the next k phases' trajectories, especially when traffic flow is greater, such as this time from weekday morning to evening. Moreover, the time performance of DHMTP algorithm is also clearly improved compared with TPMO algorithm.

Study on Streamflow Prediction Using Artificial Intelligent Technique (인공지능기법을 이용한 하천유출량 예측에 관한 연구)

  • An, Seung Seop;Sin, Seong Il
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.611-618
    • /
    • 2004
  • The Neural Network Models which mathematically interpret human thought processes were applied to resolve the uncertainty of model parameters and to increase the model's output for the streamflow forecast model. In order to test and verify the flood discharge forecast model eight flood events observed at Kumho station located on the midstream of Kumho river were chosen. Six events of them were used as test data and two events for verification. In order to make an analysis the Levengerg-Marquart method was used to estimate the best parameter for the Neural Network model. The structure of the model was composed of five types of models by varying the number of hidden layers and the number of nodes of hidden layers. Moreover, a logarithmic-sigmoid varying function was used in first and second hidden layers, and a linear function was used for the output. As a result of applying Neural Networks models for the five models, the N10-6model was considered suitable when there is one hidden layer, and the Nl0-9-5model when there are two hidden layers. In addition, when all the Neural Network models were reviewed, the Nl0-9-5model, which has two hidden layers, gave the most preferable results in an actual hydro-event.

Recurrent Neural Network with Multiple Hidden Layers for Water Level Forecasting near UNESCO World Heritage Site "Hahoe Village"

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Among many UNESCO world heritage sites in Korea, "Historic Village: Hahoe" is adjacent to Nakdong River and it is imperative to monitor the water level near the village in a bid to forecast floods and prevent disasters resulting from floods.. In this paper, we propose a recurrent neural network with multiple hidden layers to predict the water level near the village. For training purposes on the proposed model, we adopt the sixth-order error function to improve learning for rare events as well as to prevent overspecialization to abundant events. Multiple hidden layers with recurrent and crosstalk links are helpful in acquiring the time dynamics of the relationship between rainfalls and water levels. In addition, we chose hidden nodes with linear rectifier activation functions for training on multiple hidden layers. Through simulations, we verified that the proposed model precisely predicts the water level with high peaks during the rainy season and attains better performance than the conventional multi-layer perceptron.

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

Prediction of Static and Dynamic Behavior of Truss Structures Using Deep Learning (딥러닝을 이용한 트러스 구조물의 정적 및 동적 거동 예측)

  • Sim, Eun-A;Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.69-80
    • /
    • 2018
  • In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.

Evaluation of existing bridges using neural networks

  • Molina, Augusto V.;Chou, Karen C.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.187-209
    • /
    • 2002
  • The infrastructure system in the United States has been aging faster than the resource available to restore them. Therefore decision for allocating the resources is based in part on the condition of the structural system. This paper proposes to use neural network to predict the overall rating of the structural system because of the successful applications of neural network to other fields which require a "symptom-diagnostic" type relationship. The goal of this paper is to illustrate the potential of using neural network in civil engineering applications and, particularly, in bridge evaluations. Data collected by the Tennessee Department of Transportation were used as "test bed" for the study. Multi-layer feed forward networks were developed using the Levenberg-Marquardt training algorithm. All the neural networks consisted of at least one hidden layer of neurons. Hyperbolic tangent transfer functions were used in the first hidden layer and log-sigmoid transfer functions were used in the subsequent hidden and output layers. The best performing neural network consisted of three hidden layers. This network contained three neurons in the first hidden layer, two neurons in the second hidden layer and one neuron in the third hidden layer. The neural network performed well based on a target error of 10%. The results of this study indicate that the potential for using neural networks for the evaluation of infrastructure systems is very good.

A Study on the Performance of TDNN-Based Speech Recognizer with Network Parameters

  • Nam, Hojung;Kwon, Y.;Paek, Inchan;Lee, K.S.;Yang, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.32-37
    • /
    • 1997
  • This paper proposes a isolated speech recognition method of Korean digits using a TDNN(Time Delay Neural Network) which is able to recognizc time-varying speech properties. We also make an investigation of effect on network parameter of TDNN ; hidden layers and time-delays. TDNNs in our experiments consist of 2 and 3 hidden layers and have several time-delays. From experiment result, TDNN structure which has 2 hidden-layers, gives a good result for speech recognition of Korean digits. Mis-recognition by time-delays can be improved by changing TDNN structures and mis-recognition separated from time-delays can be improved by changing input patterns.

  • PDF

Recommendation system using Deep Autoencoder for Tensor data

  • Park, Jina;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.87-93
    • /
    • 2019
  • These days, as interest in the recommendation system with deep learning is increasing, a number of related studies to develop a performance for collaborative filtering through autoencoder, a state-of-the-art deep learning neural network architecture has advanced considerably. The purpose of this study is to propose autoencoder which is used by the recommendation system to predict ratings, and we added more hidden layers to the original architecture of autoencoder so that we implemented deep autoencoder with 3 to 5 hidden layers for much deeper architecture. In this paper, therefore we make a comparison between the performance of them. In this research, we use 2-dimensional arrays and 3-dimensional tensor as the input dataset. As a result, we found a correlation between matrix entry of the 3-dimensional dataset such as item-time and user-time and also figured out that deep autoencoder with extra hidden layers generalized even better performance than autoencoder.

Nonlinear System Modeling Using a Neural Networks (비선형 시스템의 신경회로망을 이용한 모델링 기법)

  • Chong, Kil To;No, Tae-Soo;Hong, Dong-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.22-29
    • /
    • 1996
  • In this paper the nodes of the multilayer hidden layers have been modified for modeling the nonlinear systems. The structure of nodes in the hidden layers is built with the feedforward, the cross talk and the recurrent connections. The feedforward links are mapping the nonlinear function and the cross talks and the recurent links memorize the dynamics of the system. The cross talks are connected between the modes in the same hidden layers and the recurrent connection has self feedback, and these two connections receive one time delayed input signals. The simplified steam boiler and the analytic multi input multi output nonlinear system which contains process noise have been modeled using this neural networks.

  • PDF

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.