In this paper, a new efficient hidden node detection method is proposed to decide whether the RTS/CTS mechanism is necessary to resolve the hidden node problem for the data transmission of each node in infrastructure mode IEEE 802.11 wireless LANs. The nodes, for which the RTS/CTS mechanism is found to be not necessary by the hidden node detection method, can transmit their data frames without performing the RTS/CTS exchange. Only the nodes, for which the RTS/CTS mechanism is found to be necessary by the hidden node detection method, perform the RTS/CTS exchange before their data frame transmissions.
본 논문에서는 국내 전파 환경에서 DTV 서비스를 안전하게 보호하면서 동시에 TV 유휴 대역 기기를 효과적으로 운용하기 위해 은닉 노드에 의한 DTV 신호 감쇄 영향을 살펴본다. 이를 위해, 국내 전파 환경을 지리적 특성에 따라 해안형, 분지형, 도시형 지역으로 분류하고, 각 지역을 지형적 특징에 따라 다시 8개 지형으로 세분화하여 측정 지점을 선정한 후 DTV 신호의 은닉 노드 감쇄 정도를 측정하고 분석한다. 국내 대도시의 경우 빌딩 건물 지역과 주상 복합 지역이 다른 나라에 비해 상대적으로 밀집해 있기 때문에, 국내 DTV 서비스를 안전하게 보호하기 위해서는 은닉 노드 마진을 최소한 38 dB 이상 설정해야 한다.
본 논문은 IEEE 802.15.4 네트워크에서의 에너지 효율을 향상시키기 위해 위한 은닉 노드들 간의 신호 충돌 문제를 해결하기 위한 은닉 노드 인식 그룹핑(HAG: Hidden-Node-Aware Grouping) 알고리즘을 제안한다. HAG 알고리즘은 노드들 간 수식 신호의 에너지를 이용하여 은닉 관계에 있는 노드들을 파악하고, 그들을 서로 다른 그룹에 배정하는 방식으로 그룹핑을 완성하고 그룹별로 신호 전송 주기를 할당한다. HAG 알고리즘의 정확한 성능 측정 및 예측을 위해 다양한 네트워크 상황을 고려하여 처리량에 대한 분석적 성능 모델을 제시한다. HAG 알고리즘을 사용하지 않은 네트워크 환경에서는 은닉 관계가 있는 노드들의 수가 증가함에 따라 처리량이 급속히 저하되지만, HAG 알고리즘을 적용하면 이와 같은 성능 저하를 예방할 수 있음을 분석적 성능 모델과 더불어 시뮬레이션 결과를 통하여 확인하였다.
The structure of neural networks is represented by a weighted directed graph with nodes representing units and links representing connections. Each link is assigned a numerical value representing the weight of the connection. In learning process, the values of weights are adjusted by errors. Following experiment results, the interval of adjusting weights, that is, epoch size influenced neural networks' performance. As epoch size is larger than a certain size, neural networks'performance decreased drastically. And the number of hidden layer's node also influenced neural networks'performance. The networks'performance decreased as hidden layers have more nodes and then increased at some number of hidden layer's node. So, in implementing of neural networks the epoch size and the number of hidden layer's node should be decided by systematic methods, not empirical or heuristic methods.
CR(Cognitive Radio)은 우선 사용자 네트워크와 공존함으로써 주파수 효율을 극대화할 수 있는 기술이다. 이러한 CR 기술의 가장 우선해야 될 과제는 우선 사용자 시스템에 대한 보호이다. 이를 위해 CR 네트워크는 주기적으로 우선 사용자의 주파수 사용을 탐지하고 우선 사용자 시스템에 간섭을 주지 않기 위해 통신 파라미터를 조절하게 된다. 하지만 CR 네트워크의 특성상 스펙트럼 검출을 통해서도 발견되지 않는 우선 사용자인 HN(Hidden Node)가 존재하게 된다. 이러한 HN가 사용하는 무선 자원을 CR 네트워크에서는 유휴자원이라 판단함으로써 우선 사용자에게 간섭을 주는 문제가 발생하며, 이는 CR 네트워크의 올바른 운용을 방해하는 요인으로 작용한다. 따라서 CR 네트워크의 안전하고 올바른 운용을 위해서는 HN 문제를 해결할 수 있는 방법이 절실히 요구된다. 본 논문에서는 이러한 HN 문제를 해결할 수 있는 방법을 제시하며, 이에 대한 성능 평가를 수행하였다.
은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.
본 논문에서는 학습계수를 발생한 오차에 따라서 적응적으로 갱신할 수 있는 학습알고리즘에 은닉 노드의 수를 다양하게 변화시킬 수 있는 적응 역 전파(Back Propagation) 알고리즘을 제안하였다. 제안한 알고리즘은 국소점을 벗어날 수 있는 것으로 기대되고, 수렴환경에 알맞은 은닉 노드의 수를 설정할 수 있다. 모의실험에서는 두 가지의 학습패턴을 가지고 실험하였다. 하나는 X-OR 문제에 대한 학습과 또 다른 하나는 $7{\times}5$ 도트 영문자 폰트에 에 대한 학습이다. 두 모의실험에서 국소 점으로 안주할 확률은 감소하였다. 또한, 영문자 폰트 학습에서의 신경회로망은 기존의 역 전파 알고리즘과 HNAD 알고리즘에 비하여 약 41.56%~58.28%정도 학습효율이 향상됨을 고찰하였다.
이 논문에서는 은닉 노드(hidden node)들이 있는 환경에서 IEEE 802.15.4의 성능을 정확하게 예측할 수 있는 수학적 모델을 제시한다. 기존의 802.15.4 성능 분석을 위한 수학적 모델은 은닉 노드들이 없는, 즉 모든 노드들은 다른 노드들의 전송 상태를 측정할 수 있는 이상적인 상황만을 고려하였다. 그러나 노드들의 배치에 따라서 은닉 노드들이 빈번하게 발생할 수 있어, 기존의 모델들은 현실적 환경에서 802.15.4의 성능을 정확히 측정하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해서 이 논문에서 제안한 모델은 기존의 802.15.4의 성능 모델에 은닉노드의 성능 영향 모델을 추가하였다. 제안한 802.15.4의 수학적 성능 모델에 의하면 작은 은닉 노드의 수에 의해 성능이 급격하게 저하된다. 일례로 전체 노드의 5%가 은닉노드일 때 802.15.4의 성능이 최대 62% 저하된다. 이러한 예측한 결과는 ns-2의 시뮬레이션 결과와 비교할 때, 최대 6%의 오류한도에서 동일하다.
본 논문에서는 충돌이 잦은 무선 저속 Personal Area Network에서 펄스 (pulse) 신호를 이용한 효율적인 그룹폴링 알고리즘을 제안한다. 현재 IEEE 802.15.4 (LR-WPAN) 표준은 저속, 저가, 저 전력 소모를 목표로 한다. 하지만, 최근 LR-WPAN (Low Rate Wireless PAN)의 응용범위가 확대되고 이에 따라 잦은 충돌이 발생하는 상황 또한 늘어나고 있다. 여기서 충돌의 대부분은 '히든노드 문제'로 인하여 발생되고 이는 CSMA/CA 만으로 해결하기 어렵고 연속해서 일어날 경우 네트워크 성능을 크게 저하시킨다. 또한, 현재 히든노드 충돌에 관한 대부분의 연구는 연속된 충돌이 잦은 상황에서 많은 채널 낭비를 유발한다. 본 논문에서 제안한 알고리즘은 잦은 충돌 상황이 발생하였을 때 이미 그룹핑 되어 있는 PAN을 전제로 펄스신호를 이용하여 각 그룹에게 채널 할당과 순서를 정해주고 할당 받은 그룹의 노드들만 경쟁 시킨다. 이에 따라 데이터를 보내기 위해 경쟁하는 노드의 수가 현저히 줄어 연속된 충돌을 줄이고, 충돌로 인한 채널낭비와 낮은 데이터 전송률이 보다 향상되어, 잦은 충돌로 인한 네트워크의 손상을 막는다. 이러한 성능 향상을 NS-2 시뮬레이션을 통해 확인하였다.
This paper proposes hidden-node aware grouping (HAG) algorithm to enhance the performance of institute of electrical and electronics engineers (IEEE) 802.15.4 networks when they undergo either severe collisions or frequent interferences by hidden nodes. According to the degree of measured collisions and interferences, HAG algorithm dynamically transforms IEEE 802.15.4 protocol between a contention algorithm and a contention-limited one. As a way to reduce the degree of contentions, it organizes nodes into some number of groups and assigns each group an exclusive per-group time slot during which only its member nodes compete to grab the channel. To eliminate harmful disruptions by hidden nodes, especially, it identifies hidden nodes by analyzing the received signal powers that each node reports and then places them into distinct groups. For load balancing, finally it flexibly adapts each per-group time according to the periodic average collision rate of each group. This paper also extends a conventional Markov chain model of IEEE 802.15.4 by including the deferment technique and a traffic source to more accurately evaluate the throughput of HAG algorithm under both saturated and unsaturated environments. This mathematical model and corresponding simulations predict with 6%discrepancy that HAG algorithm can improve the performance of the legacy IEEE 802.15.4 protocol, for example, even by 95% in a network that contains two hidden nodes, resulting in creation of three groups.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.