• 제목/요약/키워드: Hidden Data

검색결과 970건 처리시간 0.032초

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF

Multiple State Hidden Markov Model to Predict Transmembrane Protein Topology

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.1019-1031
    • /
    • 2004
  • This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.

  • PDF

일상적 사용 환경에서의 잠재니즈, 은폐니즈의 추상구조 발견 - 스마트폰 사용자의 행동데이터 수집 및 해석 (Discovering abstract structure of unmet needs and hidden needs in familiar use environment - Analysis of Smartphone users' behavior data)

  • 신성원;유승헌
    • 디자인융복합연구
    • /
    • 제16권6호
    • /
    • pp.169-184
    • /
    • 2017
  • 스마트폰과 같이 일상에서 이미 익숙하게 사용하는 제품이나 서비스에 있어 이미 드러난 사용자 니즈가 많은 만큼 드러나지 않는 니즈도 많아진다. '익숙한 불편함'을 알아채고 해결함으로써 기존의 제품 혹은 서비스에 대한 가치 확장의 기회를 끌어낼 수 있다. 숨은 니즈에 대한 다양한 연구들이 있었으며 그 결과 숨은 니즈에 대한 개념정의와 이를 알아내기 위한 방법들이 제시되었다. 그러나 기존 숨은 니즈에 관한 연구들은 주로 새로운 제품이나 서비스 개발에 초점이 맞춰져 있기 때문에 이미 익숙해진 사용에 있어서의 숨은 니즈를 다루기에는 어려운 점이 있다. 이에 익숙한 사용에서의 드러나지 않는 니즈에 대해 가설적으로 재정의하고 이를 알아내기 위해 새로운 방식으로 접근해보고자 한다. 숨은 니즈는 사용자의 표현 범위 밖에 존재하고 명백하게 설명하기 복잡한 문제로 지표 수준에서 다루기 어렵다. 이러한 이유에서 모든 설명을 배제한 사용자 행동 데이터로써 선택한 기본 데이터의 형태는 스마트폰의 스크린 샷이다. 또한 비정형 데이터 기반 정성적 분석의 한계를 극복하기 위해 정성코딩 기법을 사용하여 개별 데이터들에 규칙과 패턴을 부여하고자 한다. 사용자의 숨은 니즈를 이해할 수 있는 유의미한 단서들을 끌어내고 실제 시장동향과의 관련성 검토를 통해 숨은 니즈를 발견하는 방법으로써의 작동 가능성을 확인할 수 있다. 본질적으로 체계화하기 어려운 과제이지만 향후 다른 제품, 서비스 디자인의 숨은 니즈 발견에 있어 참고 가능한 하나의 프레임이 될 수 있을 것으로 기대된다.

RAN을 위한 개선된 학습 방법 (An Improved Learning Approach for the Resource- Allocating Network (RAN))

  • 최종수;권오신;김현석
    • 전자공학회논문지C
    • /
    • 제35C권11호
    • /
    • pp.89-98
    • /
    • 1998
  • 정적 시스템 모델링을 위해 RBF 신경회로망의 은닉 유니트를 자동으로 생성하는 ERAN을 제안한다. ERAN은 관측 데이터의 신규성을 기반으로 새로운 은닉 유니트를 할당하는 RAN의 성능을 개선한 것이다. ERAN의 학습 과정은 새로운 은닉 유니트의 생성과 네트웍 파라미터 학습을 포함한다. 네트웍은 초기에 0개의 은닉 유니트로 시작하여 세 가지의 은닉 유니트 생성 판별기준을 만족할 경우에만 새로운 은닉 유니트를 생성시킨다. 네트웍의 파라미터는 LMS 알고리즘을 이용하여 조정한다. 제안한 ERAN의 성능은 순차 학습 및 랜덤 학습을 갖는 비선형 정적 시스템 모델링 문제에 대하여 RAN의 결과와 성능을 비교한다. 두 실험에 대하여 ERAN은 RAN 보다 적은 은닉 유니트를 가지고 정확성이 더 우수한 RBF 신경회로망을 구현할 수 있음을 보인다.

  • PDF

Selecting the Optimal Hidden Layer of Extreme Learning Machine Using Multiple Kernel Learning

  • Zhao, Wentao;Li, Pan;Liu, Qiang;Liu, Dan;Liu, Xinwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5765-5781
    • /
    • 2018
  • Extreme learning machine (ELM) is emerging as a powerful machine learning method in a variety of application scenarios due to its promising advantages of high accuracy, fast learning speed and easy of implementation. However, how to select the optimal hidden layer of ELM is still an open question in the ELM community. Basically, the number of hidden layer nodes is a sensitive hyperparameter that significantly affects the performance of ELM. To address this challenging problem, we propose to adopt multiple kernel learning (MKL) to design a multi-hidden-layer-kernel ELM (MHLK-ELM). Specifically, we first integrate kernel functions with random feature mapping of ELM to design a hidden-layer-kernel ELM (HLK-ELM), which serves as the base of MHLK-ELM. Then, we utilize the MKL method to propose two versions of MHLK-ELMs, called sparse and non-sparse MHLK-ELMs. Both two types of MHLK-ELMs can effectively find out the optimal linear combination of multiple HLK-ELMs for different classification and regression problems. Experimental results on seven data sets, among which three data sets are relevant to classification and four ones are relevant to regression, demonstrate that the proposed MHLK-ELM achieves superior performance compared with conventional ELM and basic HLK-ELM.

THE HIDDEN COSTS OF QUALITY AND ACCOUNTING METHOD

  • Su Jaw-sin
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.667-672
    • /
    • 1998
  • This Paper is to describe about new concept of the hidden cost of quality and through two cases plastic bottle manufacturing to explain how to find out it. Generally, the hidden quality cost does not show in the accounting record, but some time can find in the data of cost accounting or management accounting. How to combine between the hidden quality cost and the accounting method is discussed in the conclusion.

  • PDF

Improving Security in Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Yin, Hongjian;Zhang, Leyou;Cui, Yilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2768-2780
    • /
    • 2019
  • Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.

삼중 암호화 기법을 적용한 가역 데이터 은닉기법 (Reversible data hiding technique applying triple encryption method)

  • 정수목
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.36-44
    • /
    • 2022
  • 영상의 히스토그램을 시프트 시켜 영상에 기밀 데이터를 은닉하는 가역 데이터 은닉기법들이 개발되었다. 이러한 기법들은 은닉된 기밀 데이터의 보안이 취약한 단점이 있다. 본 논문에서는 이러한 단점을 해결하기 위하여 픽셀값 정보를 사용하여 기밀 데이터를 삼중으로 암호화한 후 커버 이미지에 은닉하는 기법을 제안하였다. 제안된 기법을 사용하여 기밀 데이터를 삼중으로 암호화하여 커버 이미지에 은닉하여 스테고 이미지를 생성하면, 픽셀 정보에 기반한 암호화가 삼중으로 수행되었으므로 삼중으로 암호화되어 은닉된 기밀 데이터의 보안성이 크게 향상된다. 제안된 기법의 성능을 측정하기 위한 실험에서, 스테고 이미지로부터 삼중으로 암호화된 기밀 데이터를 추출하여도 암호화 키 없이는 원본 기밀 데이터를 추출할 수 없었다. 그리고 스테고 이미지(stego-image)의 화질이 48.39dB 이상인 매우 우수한 영상이기 때문에 스테고 이미지에 기밀데이터가 은닉되어있는지 인지할 수 없었으며, 스테고 이미지에 30,487비트 이상의 기밀 데이터가 은닉되었다. 제안된 기법은 스테고 이미지에 은닉되어있는 삼중으로 암호화된 기밀 데이터로부터 원본 기밀 데이터를 손실 없이 추출할 수 있으며, 스테고 이미지로부터 원본 커버 이미지를 왜곡 없이 복원할 수 있다. 따라서 제안된 기법은 보안이 중요하고 원본 커버 이미지를 완벽하게 복원하는 것이 필요한 군사, 의료, 디지털 라이브러리 등의 응용 분야에 효과적으로 활용될 수 있다.

Vehicle trajectory prediction based on Hidden Markov Model

  • Ye, Ning;Zhang, Yingya;Wang, Ruchuan;Malekian, Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.3150-3170
    • /
    • 2016
  • In Intelligent Transportation Systems (ITS), logistics distribution and mobile e-commerce, the real-time, accurate and reliable vehicle trajectory prediction has significant application value. Vehicle trajectory prediction can not only provide accurate location-based services, but also can monitor and predict traffic situation in advance, and then further recommend the optimal route for users. In this paper, firstly, we mine the double layers of hidden states of vehicle historical trajectories, and then determine the parameters of HMM (hidden Markov model) by historical data. Secondly, we adopt Viterbi algorithm to seek the double layers hidden states sequences corresponding to the just driven trajectory. Finally, we propose a new algorithm (DHMTP) for vehicle trajectory prediction based on the hidden Markov model of double layers hidden states, and predict the nearest neighbor unit of location information of the next k stages. The experimental results demonstrate that the prediction accuracy of the proposed algorithm is increased by 18.3% compared with TPMO algorithm and increased by 23.1% compared with Naive algorithm in aspect of predicting the next k phases' trajectories, especially when traffic flow is greater, such as this time from weekday morning to evening. Moreover, the time performance of DHMTP algorithm is also clearly improved compared with TPMO algorithm.

Deep LS-SVM for regression

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.827-833
    • /
    • 2016
  • In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.