Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).
Journal of the Korean Data and Information Science Society
/
제15권4호
/
pp.1019-1031
/
2004
This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.
스마트폰과 같이 일상에서 이미 익숙하게 사용하는 제품이나 서비스에 있어 이미 드러난 사용자 니즈가 많은 만큼 드러나지 않는 니즈도 많아진다. '익숙한 불편함'을 알아채고 해결함으로써 기존의 제품 혹은 서비스에 대한 가치 확장의 기회를 끌어낼 수 있다. 숨은 니즈에 대한 다양한 연구들이 있었으며 그 결과 숨은 니즈에 대한 개념정의와 이를 알아내기 위한 방법들이 제시되었다. 그러나 기존 숨은 니즈에 관한 연구들은 주로 새로운 제품이나 서비스 개발에 초점이 맞춰져 있기 때문에 이미 익숙해진 사용에 있어서의 숨은 니즈를 다루기에는 어려운 점이 있다. 이에 익숙한 사용에서의 드러나지 않는 니즈에 대해 가설적으로 재정의하고 이를 알아내기 위해 새로운 방식으로 접근해보고자 한다. 숨은 니즈는 사용자의 표현 범위 밖에 존재하고 명백하게 설명하기 복잡한 문제로 지표 수준에서 다루기 어렵다. 이러한 이유에서 모든 설명을 배제한 사용자 행동 데이터로써 선택한 기본 데이터의 형태는 스마트폰의 스크린 샷이다. 또한 비정형 데이터 기반 정성적 분석의 한계를 극복하기 위해 정성코딩 기법을 사용하여 개별 데이터들에 규칙과 패턴을 부여하고자 한다. 사용자의 숨은 니즈를 이해할 수 있는 유의미한 단서들을 끌어내고 실제 시장동향과의 관련성 검토를 통해 숨은 니즈를 발견하는 방법으로써의 작동 가능성을 확인할 수 있다. 본질적으로 체계화하기 어려운 과제이지만 향후 다른 제품, 서비스 디자인의 숨은 니즈 발견에 있어 참고 가능한 하나의 프레임이 될 수 있을 것으로 기대된다.
정적 시스템 모델링을 위해 RBF 신경회로망의 은닉 유니트를 자동으로 생성하는 ERAN을 제안한다. ERAN은 관측 데이터의 신규성을 기반으로 새로운 은닉 유니트를 할당하는 RAN의 성능을 개선한 것이다. ERAN의 학습 과정은 새로운 은닉 유니트의 생성과 네트웍 파라미터 학습을 포함한다. 네트웍은 초기에 0개의 은닉 유니트로 시작하여 세 가지의 은닉 유니트 생성 판별기준을 만족할 경우에만 새로운 은닉 유니트를 생성시킨다. 네트웍의 파라미터는 LMS 알고리즘을 이용하여 조정한다. 제안한 ERAN의 성능은 순차 학습 및 랜덤 학습을 갖는 비선형 정적 시스템 모델링 문제에 대하여 RAN의 결과와 성능을 비교한다. 두 실험에 대하여 ERAN은 RAN 보다 적은 은닉 유니트를 가지고 정확성이 더 우수한 RBF 신경회로망을 구현할 수 있음을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5765-5781
/
2018
Extreme learning machine (ELM) is emerging as a powerful machine learning method in a variety of application scenarios due to its promising advantages of high accuracy, fast learning speed and easy of implementation. However, how to select the optimal hidden layer of ELM is still an open question in the ELM community. Basically, the number of hidden layer nodes is a sensitive hyperparameter that significantly affects the performance of ELM. To address this challenging problem, we propose to adopt multiple kernel learning (MKL) to design a multi-hidden-layer-kernel ELM (MHLK-ELM). Specifically, we first integrate kernel functions with random feature mapping of ELM to design a hidden-layer-kernel ELM (HLK-ELM), which serves as the base of MHLK-ELM. Then, we utilize the MKL method to propose two versions of MHLK-ELMs, called sparse and non-sparse MHLK-ELMs. Both two types of MHLK-ELMs can effectively find out the optimal linear combination of multiple HLK-ELMs for different classification and regression problems. Experimental results on seven data sets, among which three data sets are relevant to classification and four ones are relevant to regression, demonstrate that the proposed MHLK-ELM achieves superior performance compared with conventional ELM and basic HLK-ELM.
한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
/
pp.667-672
/
1998
This Paper is to describe about new concept of the hidden cost of quality and through two cases plastic bottle manufacturing to explain how to find out it. Generally, the hidden quality cost does not show in the accounting record, but some time can find in the data of cost accounting or management accounting. How to combine between the hidden quality cost and the accounting method is discussed in the conclusion.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2768-2780
/
2019
Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.
영상의 히스토그램을 시프트 시켜 영상에 기밀 데이터를 은닉하는 가역 데이터 은닉기법들이 개발되었다. 이러한 기법들은 은닉된 기밀 데이터의 보안이 취약한 단점이 있다. 본 논문에서는 이러한 단점을 해결하기 위하여 픽셀값 정보를 사용하여 기밀 데이터를 삼중으로 암호화한 후 커버 이미지에 은닉하는 기법을 제안하였다. 제안된 기법을 사용하여 기밀 데이터를 삼중으로 암호화하여 커버 이미지에 은닉하여 스테고 이미지를 생성하면, 픽셀 정보에 기반한 암호화가 삼중으로 수행되었으므로 삼중으로 암호화되어 은닉된 기밀 데이터의 보안성이 크게 향상된다. 제안된 기법의 성능을 측정하기 위한 실험에서, 스테고 이미지로부터 삼중으로 암호화된 기밀 데이터를 추출하여도 암호화 키 없이는 원본 기밀 데이터를 추출할 수 없었다. 그리고 스테고 이미지(stego-image)의 화질이 48.39dB 이상인 매우 우수한 영상이기 때문에 스테고 이미지에 기밀데이터가 은닉되어있는지 인지할 수 없었으며, 스테고 이미지에 30,487비트 이상의 기밀 데이터가 은닉되었다. 제안된 기법은 스테고 이미지에 은닉되어있는 삼중으로 암호화된 기밀 데이터로부터 원본 기밀 데이터를 손실 없이 추출할 수 있으며, 스테고 이미지로부터 원본 커버 이미지를 왜곡 없이 복원할 수 있다. 따라서 제안된 기법은 보안이 중요하고 원본 커버 이미지를 완벽하게 복원하는 것이 필요한 군사, 의료, 디지털 라이브러리 등의 응용 분야에 효과적으로 활용될 수 있다.
Ye, Ning;Zhang, Yingya;Wang, Ruchuan;Malekian, Reza
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3150-3170
/
2016
In Intelligent Transportation Systems (ITS), logistics distribution and mobile e-commerce, the real-time, accurate and reliable vehicle trajectory prediction has significant application value. Vehicle trajectory prediction can not only provide accurate location-based services, but also can monitor and predict traffic situation in advance, and then further recommend the optimal route for users. In this paper, firstly, we mine the double layers of hidden states of vehicle historical trajectories, and then determine the parameters of HMM (hidden Markov model) by historical data. Secondly, we adopt Viterbi algorithm to seek the double layers hidden states sequences corresponding to the just driven trajectory. Finally, we propose a new algorithm (DHMTP) for vehicle trajectory prediction based on the hidden Markov model of double layers hidden states, and predict the nearest neighbor unit of location information of the next k stages. The experimental results demonstrate that the prediction accuracy of the proposed algorithm is increased by 18.3% compared with TPMO algorithm and increased by 23.1% compared with Naive algorithm in aspect of predicting the next k phases' trajectories, especially when traffic flow is greater, such as this time from weekday morning to evening. Moreover, the time performance of DHMTP algorithm is also clearly improved compared with TPMO algorithm.
Journal of the Korean Data and Information Science Society
/
제27권3호
/
pp.827-833
/
2016
In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.