References
- Bengio, Y. and Le Cun, Y. (2007). Scaling learning algorithms towards AI. In Large Scale Kernel Machines, edited by Bottou, L., Chapelle, O., De Coste, D., and Weston, J., MIT Press, Cambridge.
- Cho, Y. and Saul, S. K. (2009). Kernel methods for deep learning. Advances in Neural Information Processing Systems, 22, 342-350.
- Hwang, C. (2014). Support vector quantile regression for autoregressive data. Journal of the Korean Data & Information Science Society, 25, 1539-1547. https://doi.org/10.7465/jkdi.2014.25.6.1539
- Hwang, C. (2015). Partially linear support vector orthogonal quantile regression with measurement errors. Journal of the Korean Data & Information Science Society, 26, 209-216. https://doi.org/10.7465/jkdi.2015.26.1.209
- Hwang, C. (2016). Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process. Journal of the Korean Data & Information Science Society, 27, 523-530. https://doi.org/10.7465/jkdi.2016.27.2.523
- Li, D., Tian, Y. and Xu, H. (2014). Deep twin support vector machine. In Proceedings of IEEE International Conference on Data Mining Workshop, 65-73, IEEE, Shenzhen, China.
- Mercer, J. (1909). Functions of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society A, 209, 415-446. https://doi.org/10.1098/rsta.1909.0016
- Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning internal representations by error propagation. Nature, 323, 533-536. https://doi.org/10.1038/323533a0
- Seok, K. (2015). Semisupervised support vector quantile regression. Journal of the Korean Data & Information Science Society, 26, 517-524. https://doi.org/10.7465/jkdi.2015.26.2.517
- Shim, J. and Seok, K. (2014). A transductive least squares support vector machine with the difference convex algorithm. Journal of the Korean Data & Information Science Society, 25, 455-464. https://doi.org/10.7465/jkdi.2014.25.2.455
- Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Pro-cessing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Suykens, J. A. K., Vandewalle, J. and DeMoor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14, 23-35. https://doi.org/10.1016/S0893-6080(00)00077-0
- Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
- Wahba, G. (1990). Spline models for observational data, CMMS-NSF Regional Conference Series in Applied Mathematics, 59, SIAM, Philadelphia.
- Wiering, M. A. and Schomaker, L. R. B. (2014). Multi-layer support vector machines. In Regularization, Optimization, Kernels, and Support Vector Machines, edited by Suykens, Signoretto and Argyriou, Chapman & Hall/CRC, Boca Raton.
- Zhuang, Z., Tsang, I. W. and Choi, S. C. H. (2011). Two-layer multiple kernel learning. In Proceedings of International Conference on Artificial Intelligence and Statistics, 909-917.
Cited by
- Geographically weighted least squares-support vector machine vol.28, pp.1, 2016, https://doi.org/10.7465/jkdi.2017.28.1.227
- 국제곡물가격에 대한 기후의 고차 선형 적률 인과관계 연구 vol.28, pp.1, 2017, https://doi.org/10.7465/jkdi.2017.28.1.67
- 원유가격에 대한 환율의 인과관계 : 비모수 분위수검정 접근 vol.28, pp.2, 2017, https://doi.org/10.7465/jkdi.2017.28.2.361
- Feature selection in the semivarying coefficient LS-SVR vol.28, pp.2, 2016, https://doi.org/10.7465/jkdi.2017.28.2.461
- 두 이종 혼합 모형에서의 수정된 경사 하강법 vol.28, pp.6, 2016, https://doi.org/10.7465/jkdi.2017.28.6.1245