References
- Bai, Z. D., Wang, K. Y. and Wong, W. K. (2011) Mean-variance ratio test, a complement to coefficient of variation test and Sharpe ratio test. Statistics and Probability Letters, 81, 1078-1085 https://doi.org/10.1016/j.spl.2011.02.035
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, edited by J.M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press, Oxford, 35-60.
- Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.1080/01621459.1996.10476668
- Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankya B, 60, 1-18.
- Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 38, edited by P. Lahiri, 135-207, Beachwood Ohio.
- Chhikara, R. S. and Folks, L. (1989). The inverse Gaussian distribution; Theory, methodology and applications, Marcel Dekker, New York.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2004). Noninformative priors for the ratio of parameters in inverse Gaussian distribution. The Korean Journal of Applied Statistics, 17, 49-60. https://doi.org/10.5351/KJAS.2004.17.1.049
- Kang, S. G., Kim, D. H. and Lee, W. D. (2013). Default Bayesian testing for the scale parameters in two parameter exponential distributions. Journal of Korean Data & Information Science Society, 24, 949-957. https://doi.org/10.7465/jkdi.2013.24.4.949
- Kang, S. G., Kim, D. H. and Lee, W. D. (2014). Default Bayesian testing for the scale parameters in the half logistic distributions. Journal of the Korean Data & Information Science Society, 25, 465-472. https://doi.org/10.7465/jkdi.2014.25.2.465
- Kang, S. G., Kim, D. H. and Lee, W. D. (2015). Noninformative priors for the common shape parameter of several inverse Gaussian distributions. Journal of the Korean Data & Information Science Society, 26, 243-253. https://doi.org/10.7465/jkdi.2015.26.1.243
- Niu, C., Guo, X., Xu, W. and Zhu, L. (2014). Testing equality of shape parameters in several inverse Gaussian populations. Metrika, 77, 795-809. https://doi.org/10.1007/s00184-013-0465-5
- O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal Statistical Society B, 57, 99-118.
- O'Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
- Seshadri, V. (1999). The inverse Gaussian distribution; statistical theory and applications, Springer Verlag, New York.
- Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society B, 44, 377-387.
- Tian, L. L. (2006) Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable. Computational Statistics and Data Analysis, 51, 1156-1162. https://doi.org/10.1016/j.csda.2005.11.012
- Ye, R. D., Ma, T. F. and Wang, S. G. (2010) Inferences on the common mean of several inverse Gaussian populations. Computational Statistics and Data Analysis, 54, 906-915. https://doi.org/10.1016/j.csda.2009.09.039