Journal of the Institute of Electronics Engineers of Korea SD
/
v.39
no.2
/
pp.82-90
/
2002
BDD have become widely used for various CAD applications because Boolean functions can be represented uniquely and compactly by using BDD. The size of the BDD representation for a function is very sensitive to the choice of orderings on the input variable. Therefore, it is very important to find a good variable ordering which minimize the size of the BDD. Since finding an optimal ordering is NP-complete, several heuristic algorithms have been proposed to find good variable orderings. In this paper, we propose a variable ordering algorithm, Faster-${\mu}$0, based on the ${\mu}$0(microcanonical optimization). In the Faster-${\mu}$0 algorithm, the initialization phase is replaced with a shifting phase to produce better solutions in a fast local search. We find values for algorithm parameters experimentally and the proposed algorithm has been experimented on well known benchmark circuits and shows superior performance compared to various existing algorithms.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.228-233
/
2005
The protein side-chain packing problem (SCPP) is known to be NP-complete. Various graph theoretic based side-chain packing algorithms have been proposed. However as the size of the protein becomes larger, the sampling space increases exponentially. Hence, one approach to cope with the time complexity is to decompose the graph of the protein into smaller subgraphs. Some existing approaches decompose the graph into biconnected components at an articulation point (resulting in an at-most 21-residue subgraph) or solve the SCPP by tree decomposition (4-, 5-residue subgraph). In this regard, we had also presented a deterministic based approach called as SPWCQ using the notion of maximum edge weight clique in which we reduce SCPP to a graph and then obtain the maximum edge-weight clique of the obtained graph. This algorithm performs well for a protein of less than 500 residues. However, it fails to produce a feasible solution for larger proteins because of the size of the search space. In this paper, we present a new heuristic approach for the side-chain packing problem based on the maximum edge-weight clique finding algorithm that enables us to compute the side-chain packing of much larger proteins. Our new approach can compute side-chain packing of a protein of 874 residues with an RMSD of 1.423${\AA}$.
Journal of the Korea Academia-Industrial cooperation Society
/
v.9
no.1
/
pp.221-227
/
2008
A vehicle routing problem with time constraint is one of the important problems in distribution and transportation. The service of a customer must start and finish within a given time interval. Our method is based on an improved operators of genetic algorithm and the objective is to minimize the cost of servicing the set of customers without being tardy or exceeding the capacity or travel time of the vehicles. This research shows that a proposed method based on the improved genetic search can obtain good solutions to vehicle routing problems with time constrained compared with a high degree of efficiency other heuristics. For the computational purpose, we developed a GUI-type computer program according to the proposed method and the computational results show that the proposed method is very effective on a set of standard test problems, and can be potentially useful in solving the vehicle routing problems.
In supervised machine learning, an induction algorithm, which is able to extract rules from data with learning capability, provides a useful tool for data mining. Practical induction algorithms are known to degrade in prediction accuracy and generate complex rules unnecessarily when trained on data containing superfluous features. Thus it needs feature subset selection for better performance of them. In feature subset selection on the induction algorithm, wrapper method is repeatedly run it on the dataset using various feature subsets. But it is impractical to search the whole space exhaustively unless the features are small. This study proposes a heuristic method that uses sensitivity analysis of neural networks to the wrapper method for generating rules with higher possible accuracy. First it gives priority to all features using sensitivity analysis of neural networks. And it uses the wrapper method that searches the ordered feature space. In experiments to three datasets, we show that the suggested method is capable of selecting a feature subset that improves the performance of the induction algorithm within certain iteration.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.11
/
pp.2373-2377
/
2009
In this paper, the threshold voltage characteristics have been analyzed using three dimensional Poisson's equation for FinFET. The FinFET is extensively been studing since it can reduce the short channel effects as the nano device. We have presented the short channel effects such as subthreshold swing and threshold voltage for PinFET, using the analytical three dimensional Poisson's equation. We have analyzed for channel length, thickness and width to consider the structural characteristics for FinFET. Using this model, the subthreshold swing and threshold voltage have been analyzed for FinFET since the potential and transport model of this analytical three dimensional Poisson's equation is verified as comparing with those of the numerical three dimensional Poisson's equation.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.6
/
pp.661-667
/
2005
In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.
We developed an evolutionary optimization process involving a genetic algorithm and combinatorial chemistry (combi-chem), which was tailored exclusively for tile development of LED phosphors with a high luminescent efficiency, when excited by soft ultra violet irradiation. The ultimate goal of our study was to develop oxide red phosphors, which are suitable for three-band white Light Emitting Diodes (LED). To accomplish this, a computational evolutionary optimization process was adopted to screen a Eu$^{3+}$-doped alkali earth borosilicate system. The genetic algorithm is a well-known, very efficient heuristic optimization method and combi-chem is also a powerful tool for use in an actual experimental optimization process. Therefore the combination of a genetic algorithm and combi-chem would enhance the searching efficiency when applied to phosphor screening. Vertical simulations and an actual synthesis were carried out and promising red phosphors for three-band white LED applications, such as Eu$_{0.14}$Mg$_{0.18}$Ca$_{0.07}$Ba$_{0.12}$B$_{0.17}$Si$_{0.32}$O$_{\delta}$, were obtained.
Nowadays various new items are available, but limitation of searching effort makes it difficult for customers to search new items which they want to purchase. Therefore new item providers and customers need recommendation systems which recommend right items for right customers. In this research, we focus on the new item recommendation issue, and suggest preference boundary- based procedures which extend traditional content-based algorithm. We introduce the concept of preference boundary in a feature space to recommend new items. To find the preference boundary of a target customer, we suggest heuristic algorithms to find the centroid and the radius of preference boundary. To evaluate the performance of suggested procedures, we have conducted several experiments using real mobile transaction data and analyzed their results. Some discussions about our experimental results are also given with a further research area.
Kang Jaeho;Oh Myung-Seob;Ryu Kwang Ryel;Kim Kap Hwan
Journal of Navigation and Port Research
/
v.29
no.1
s.97
/
pp.83-90
/
2005
Intra-block remarshalling is the task of rearranging into some target bays those containers which are scattered around within the block, so that the containers can be loaded onto the ship efficiently. However, if we rearrange the containers without considering the container loading sequence, excessive rehandling work will be required at the time of loading because the containers to be fetched are often stacked under other containers. Therefore, the remarshalling should be done by moving the relevant containers in an appropriate order. This paper presents an efficient heuristic search technique for finding an appropriate container moving order during remarshalling to avoid rehandling at the time of loading. Simulation experiments have shown that the proposed method can generate rehandling-free solutions in real time.
Transactions of the Korean Society of Mechanical Engineers B
/
v.38
no.9
/
pp.747-755
/
2014
The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.