An Extended Content-based Procedure to Solve a New Item Problem

신상품 추천을 위한 확장된 내용기반 추천방법

  • 장문경 (경희대학교 경영대학, 경영연구원) ;
  • 김혜경 (경희대학교 경영대학, 경영연구원) ;
  • 김재경 (경희대학교 경영대학, 경영연구원)
  • Published : 2008.12.31

Abstract

Nowadays various new items are available, but limitation of searching effort makes it difficult for customers to search new items which they want to purchase. Therefore new item providers and customers need recommendation systems which recommend right items for right customers. In this research, we focus on the new item recommendation issue, and suggest preference boundary- based procedures which extend traditional content-based algorithm. We introduce the concept of preference boundary in a feature space to recommend new items. To find the preference boundary of a target customer, we suggest heuristic algorithms to find the centroid and the radius of preference boundary. To evaluate the performance of suggested procedures, we have conducted several experiments using real mobile transaction data and analyzed their results. Some discussions about our experimental results are also given with a further research area.

현재 다양한 신상품의 잦은 출시로 인해 고객들은 자신이 원하는 신상품을 찾는데 어려움을 겪고 있다. 또한 기업들은 신상품을 구매할 가능성이 높은 고객을 찾는데 많은 노력을 기울이고 있는 상황에서 고객의 선호에 부합하는 신상품을 찾도록 도와주는 추천시스템에 대한 요구가 대두되고 있다. 본 연구는 신상품 추천을 위해 상품 특성을 추출하여 다차원 속성 공간에 표현하고 이를 바탕으로 선호영역(Preference Boundary)를 제시하였다. 다시 말해 고객들이 과거 구매한 상품의 속성을 바탕으로 고객의 선호 영역을 형성하고, 신상품의 속성이 선호 영역 내에 위치하면 추천이 이루어지는 방법을 제시하였다. 선호 영역을 형성하는 과정은 크게 선호영역의 중심점을 구하는 단계와 선호 영역의 범위를 구하는 단계로 구성되는데, 이 연구에서는 선호영역의 범위를 구하는 단계로 t-분포를 이용하는 방법, 중심점과 구매 상품과의 가장 먼 거리와 가까운 거리를 이용하는 방법, 그리고 중심점과 구매 상품들 간의 평균 거리를 이용하는 방법을 제시하였다. 제시된 방법들의 성능을 평가하기 위해 신상품 출시와 구매가 잦은 모바일 이미지 거래 데이터를 이용하여 실험을 진행하였다. 이 논문에서 제시한 각 방법들의 성능을 비교해본 결과 목표 고객의 중심점과 구매 상품과의 가장 먼 거리와 가까운 거리를 이용하는 방법으로 각 상품별 선호영역의 적정한 범위를 구하였을 때, 신상품 추천의 정확도가 향상되는 것으로 분석되었다.

Keywords